
The EULISP De�nition

Version 0.7.5

Julian Padget Greg Nuyens

(Editors)

Giuseppe Attardi Javier B�ejar Russell Bradford Peter Broadbery

Christopher Burdorf J�erôme Chailloux Thomas Christaller Je� Dalton

Klaus D�a�ler Harley Davis David De'Roure John Fitch

Richard Gabriel Brigitte Glas Nicolas Graube Dieter Kolb

Pascal Kuczynski Antonio Moreno Marco Nanni Eugen Neidl

Pierre Parquier Keith Playford Willem van der Poel Christian Queinnec

Matthias Schneider-Hufschmidt Enric Sesa Herbert Stoyan Fran�cois Surirey

Richard Tobin

(Contributors)

June 10, 1991

2

Summary

The purpose of this document is to de�ne the programming language EULISP. EULISP is a dialect of Lisp

and as such owes much to the great body of work that has been done on language design in the name of

Lisp over the last thirty years. EULISP is the outcome of e�orts on the part of many people in countries of

the European Community since 1986. The guiding principles of the language are simplicity, expressiveness,

completeness, orthogonality of constructs, formal de�nition and e�cient implementation.

The report is divided into six major sections. Section 1 gives a brief overview of EULISP and recounts

the history of its development. Section 2 describes the interpretation of expressions and the structure

of programs. Section 3 lists all the standard procedures of the di�erent language levels for manipulating

data internally and externally. Section 4 describes the operations on class system. Section 5 describes the

environment related operations. Section 6 describes the standard libraries of the language. Appendix A

de�nes the formal syntax for EULISP programs and Appendix B gives the formal semantics.

TABLE OF CONTENTS 3

Table of Contents

1 Introduction 7

1.1 Introduction to 0.7.5 : 7

1.2 History : 7

1.3 Acknowledgements : 7

1.4 Scope : 8

1.5 Normative References : 8

1.6 Conformance De�nitions : 9

1.6.1 Error De�nitions : 10

1.7 Compliance : 10

1.8 Conventions : 11

1.8.1 Layout and Typography : 11

1.8.2 Meta-language : 11

1.8.3 Naming : 12

1.9 De�nitions : 13

1.9.1 Basic De�nitions : 13

1.9.2 Object-oriented De�nitions : 15

2 Structure and Interpretation 18

2.1 Overview : 18

2.2 Language Structure : 19

2.3 Lexical Characteristics : 19

2.3.1 Identi�ers : 19

2.3.2 Whitespace and Comments : 20

2.3.3 Numeric Literals : 20

2.3.4 Character and String Literals : 20

2.4 Classes, Objects and Generic Functions : 21

2.4.1 Objects : 21

2.4.2 Classes : 22

2.4.3 Inheritance : 23

2.4.4 Slots : 23

2.4.5 Generic Functions : 23

2.4.6 Methods : 23

2.5 Conditions : 24

2.6 Modules : 24

2.6.1 Imports : 24

2.6.2 Syntax : 24

2.6.3 Exports : 25

2.6.4 De�nitions and Expressions : 25

2.6.5 Module Processing : 25

2.7 Threads and Semaphores : 26

2.8 Numbers : 27

2.8.1 Level-0 Numbers : 27

2.8.2 Level-1 Numbers : 27

2.9 External Representations : 28

4 TABLE OF CONTENTS

3 Basic Expressions 29

3.1 Level-0 Expressions : 29

3.1.1 Primitive Expressions : 29

3.1.2 Constant and Literal Expressions : 29

3.1.3 Assignments : 30

3.1.4 Conditional Expressions : 30

3.1.5 Variable Binding and Sequences : 31

3.1.6 Function Calls and Application : 32

3.1.7 Method Combination : 32

3.1.8 Condition Handling : 32

3.1.9 De�ned Conditions : 34

3.1.10 Quasiquotation Expressions : 35

3.1.11 Module De�nition : 35

3.1.12 De�nitions : 36

3.2 Level-1 Expressions : 38

3.2.1 Dynamic Binding : 39

3.2.2 Lexical Binding Extensions : 39

3.2.3 Conditional Extensions : 40

3.2.4 Exit Extensions : 40

3.2.5 De�ned Conditions : 41

3.2.6 De�nitions : 41

3.3 Level-2 Expressions : 43

4 Classes and Objects 43

4.1 Level-0 Classes : 43

4.1.1 Accessing Objects : 43

4.1.2 Comparing Objects : 44

4.1.3 Copying Objects : 45

4.1.4 Conversion : 45

4.1.5 Classes : 45

4.1.6 Numbers : 49

4.1.7 Coercion : 51

4.1.8 Single Precision Integer Arithmetic : 51

4.1.9 Double Precision Floating Point Arithmetic : 53

4.1.10 Characters : 55

4.1.11 Strings : 56

4.1.12 Pairs and Lists : 56

4.1.13 Functions and Methods : 57

4.1.14 Streams : 58

4.1.15 Symbols : 62

4.1.16 Tables : 63

4.1.17 Threads and Semaphores : 63

4.1.18 Vectors : 64

4.2 Level-1 Classes : 64

4.2.1 Character Sets : 64

4.2.2 Classes : 65

4.2.3 Functions and Methods : 66

4.2.4 Slot Descriptions : 67

4.2.5 Symbols : 68

4.2.6 Single Precision Floating Point Arithmetic : 68

4.2.7 Variable Precision Integer Arithmetic : 70

TABLE OF CONTENTS 5

4.3 Level-2 Classes : 70

5 Environment 70

5.1 Interactive Processing : 71

5.2 Module operations : 71

5.3 File operations : 71

6 Library Modules 72

6.1 Elementary-functions Module : 72

6.2 Rational Arithmetic Module : 74

6.3 Complex Arithmetic Module : 74

6.4 List-operators Module : 75

6.4.1 Reconstructing Lists : 75

6.4.2 Copying Lists : 76

6.4.3 Updating Lists : 76

6.4.4 Converting Lists : 76

6.4.5 Searching Lists : 77

6.4.6 Dissecting Lists : 77

6.4.7 Lists as Sets : 78

6.4.8 Mapping over Lists : 78

6.5 Formatted-IO Module : 78

A Syntax 81

A.1 Notation : 81

A.2 De�nition Syntax : 82

A.2.1 Level-0 De�nition Syntax : 82

A.2.2 Level-1 De�nition Syntax : 83

A.3 Expression Syntax : 84

A.4 External Representations - write : 84

A.5 External Representations - prin : 85

A.6 Token Syntax : 85

A.7 S-expression Syntax : 85

A.8 Character Syntax : 85

A.9 Number Syntax : 86

A.10 String Syntax : 86

A.11 Identi�er Syntax : 87

A.12 Quasiquotation : 87

B Formal Semantics 87

Bibliography 88

Indexes 90

Function Index : 90

Macro Index : 93

Generic Function Index : 94

Method Index : 96

Condition Index : 98

Constant Index : 100

Index : 101

6 LIST OF TABLES

List of Figures

1 Level-0 initial class hierarchy : 22

2 Example of import and export directives : 26

3 Level-0 number class hierarchy and coercion chart : 27

4 Level-1 number class hierarchy and coercion chart : 28

List of Tables

1 Methods for equal : 45

2 Methods de�ned on copy : 46

3 Converter functions and Methods de�ned on them : 47

4 Converter methods for level-0 numbers : 51

5 Converter methods for level-1 numbers : 52

6 expt result classes : 74

7

1 Introduction

EULISP de�nes a dialect of Lisp. EULISP does not claim any particular Lisp dialect as its closest relative,

although parts of it were inuenced by features found in Common Lisp, InterLISP, LE-LISP, LISP/VM, Scheme,

and T.

EULISP both introduces new ideas and takes from these Lisps. It also extends or simpli�es their ideas as

necessary. It takes a class system, but extends the notion by integrating the primitive types (classes) with

user-de�ned classes. It has a condition system. It introduces a module mechanism for information hiding

and separate compilation and it has �rst-class continuations. But this is not the place for a detailed language

comparison. That can be drawn from the rest of this report. However, it is important to stress that the

distinguishing features of EULISP are the integration of the classical Lisp type system and the object system

and the complementary abstraction facilities provided by the class and the module mechanism. EULISP

inherits from Scheme the properties of static-scoping, a single lexical environment for all variables and the

uniform treatment of operator and operands.

1.1 Introduction to 0.7.5

The aim of this version of the de�nition is to complete as much as possible the level-0 and level-1 descriptions

and to specify fully those library modules that are well-understood from experience and prior art. Of course,

there are still many inconsistencies and inaccuracies. Although some sections are incomplete|and contain a

note to that e�ect|references to those sections are written as if they were complete. This is intentional. For

instance, the summary at the beginning of this document refers to appendix B containing the formal semantics,

but since they are not complete they are not included. New descriptions of (i) the thread and mutual exclusion

mechanism (ii) the macro expansion mechanism (iii) the inheritance protocol are in preparation and will be

available as addenda to this version. Finally, it is becoming clear that the current document structure is no

longer viable and the next major version will be radically reorganised to reect better the structure of the

language.

1.2 History

The EULISP group �rst met in September 1985 at IRCAM in Paris to discuss the need for a commonEuropean

dialect of Lisp. Subsequent meetings formulated the view of EULISP that was presented at the 1986 ACM

Conference on Lisp and Functional Programming held at MIT, Cambridge, Massachussetts [Padget et al,

1986] and at the European Conference on Arti�cial Intelligence (ECAI-86) held in Brighton, Sussex [Stoyan

et al, 1986]. Since then, progress has not been steady, but happening as various people had su�cient time

and energy to develop part of the language. Consequently, although the vision of the language has in

the most part been shared over this period, only certain parts were turned into physical descriptions and

implementations. For a nine month period starting in January 1989, through the support of INRIA, it

became possible to start writing this document, the EULISP de�nition. Since then, a�airs have returned to

their previous state, but with the evolution of the implementations of EULISP and the background of the

foundations laid by the INRIA supported work, there is convergence to a consistent and practical de�nition.

1.3 Acknowledgements

The acknowledgements for this report fall into three categories: intellectual, personal, and �nancial.

The ancestors of EULISP (in alphabetical order) are Common Lisp [Steele, 1984/90], InterLISP [Teitelman,

1978], LE-LISP [Chailloux et al, 1984], LISP/VM [Alberga et al, 1986], Scheme [Clinger & Rees, 1986], and T

[Rees et al, 1986] [Slade, 1987]. Thus, the authors of this report are pleased to acknowledge both the authors

of the manuals and de�nitions of the above languages and the many who have dissected and extended those

languages in individual papers. The various papers on Standard ML [Milner et al, 1986] and the draft report

on Haskell [Hudak, Wadler et al., 1988] have also provided much useful input.

8 1 INTRODUCTION

The writing of this report has been supported by Bull S.A., Ecole Polytechnique (LIX), ILOG S.A., Insti-

tut National de Recherche en Informatique et en Automatique (INRIA), University of Bath, and Universit�e

Paris VI (LITP). The authors gratefully acknowledge this support. Many people from European Community

countries have attended and contributed to EULISP meetings since they started, and the authors would like

to thank all those who have helped in the development of EULISP.

Initially, funding for the EULISP group came from individuals' institutions or companies, but since 1987

the Commission of the European Communities (CEC, as the EULISP Technical Interest Group (TIG), also

called the EULISP committee, supported by DG XIII) has provided the assistance without which this e�ort

would have faded away. In addition, the EULISP group is grateful for the support of: British Standards

Institute, Centre d'Estudis Avan�cats de Blanes, CSIC, Departament de Llenguatges i Sistemes Inform�atics

(LSI, Universitat Polit�ecnica de Catalunya), Gesellschaft f�ur Mathematik und Datenverarbeitung (GMD),

ILOG S.A., Insiders GmbH., Institut National de Recherche en Informatique et en Automatique (INRIA),

Institut de Recherche et de Coordination Acoustique Musique (IRCAM), Rank Xerox France, Science and

Engineering Research Council, Siemens AG, University of Bath, Universitet Delft, University of Edinburgh,

Universit�at Erlangen, Universit�e Paris VI (LITP).

1.4 Scope

This document speci�es the syntax and semantics of the computer programming language EULISP by de�n-

ing the requirements for a conforming EULISP processor and a conforming EULISP program (the textual

represenation of data and algorithms).

This document does not specify:

1. The size or complexity of an EULISP program that will exceed the capacity of any speci�c con�guration

or processor, nor the actions to be taken when those limits are exceeded.

2. The minimal requirements of a con�guration that is capable of supporting an implementation of an

EULISP processor.

3. The method of preparation of an EULISP program for execution or the method of activation of this

EULISP program once prepared.

4. The method of reporting errors, warnings or exceptions.

5. The typographical representation of an EULISP program for human reading.

To clarify certain instances of the use of English in this document the following de�nitions are provided:

must: a verbal form used to introduce a required property. All conforming processors must satisfy the

property.

should: a verbal form used to introduce a strongly recommended property. Implementers of processors are

urged (but not required) to satisfy the property.

1.5 Normative References

The following standards contain provisions, which through references in this document constitute provisions

of this de�nition. At the time of writing, the editions indicated were valid. All standards are subject to

revision and parties making use of this de�nition are encouraged to apply the most recent edition of the

standard listed below.

1. ISO/IEC 646: 1983, Information processing|ISO 7-bit coded character set for information inter-

change. Note: this standard is currently under revision and interested parties should reference the

1990 Draft International Standard version of ISO/IEC 646.

1.6 Conformance De�nitions 9

2. ISO/IEC 10646: 1990, Information processing|ISO multi-byte coded character set for information

interchange. Note: this is not yet a standard and the given name may not be the �nal one. Only the

code number is correct.

3. ISO/IEC CD 10967: 1991, Information technology|Programming languages|Language compatible

arithmetic. Note: this is not yet a standard and the reference cited here is to a Committee Draft (version

3.1).

4. Language compatible complex arithmetic. Note: no formal reference to this standard in development

was available at the time of writing.

5. Common language independent calling mechanism and datatypes. Language-Independent Datatypes:

working draft 5, JTC1/SC22/WG11/N233 (also X3T2/91-109). Note: no formal reference for the

calling mechanism was available at the time of writing.

In addition the following technical reports have inuenced the drafting of this de�nition.

1. ISO/IEC TR 10034: 1990, Information technology|Guidelines for the preparation of conformity

clauses in programming language standards.

2. ISO/IEC TR 10176: 1991, Information technology|Guidelines for the preparation of programming

language standards. Note: this is currently a draft technical report.

1.6 Conformance De�nitions

The following terms are general in that they could be applied to the de�nition of any programming language.

They are derived from ISO/IEC TR 10034: 1990.

con�guration: Host and target computers, any operating systems(s) and software (run-time system) used

to operate a language processor.

conformity clause: Statement that is not part of the language de�nition but that speci�es requirements

for compliance with the language standard.

conforming program: Program which is written in the language de�ned by the language standard and

which obeys all the conformity clauses for programs in the language standard.

conforming processor: Processor which processes conforming programs and program units and which

obeys all the conformity clauses for processors in the language standard.

error: Incorrect program construct or incorrect functioning of a program as de�ned by the language stan-

dard.

extension: Facility in the processor that is not speci�ed in the language standard but that does not cause

any ambiguity or contradiction when added to the language standard.

implementation-de�ned: Speci�c to the processor, but required by the language standard to be de�ned

and documented by the implementer.

processor: Compiler, translator or interpreter working in combination with a con�guration.

10 1 INTRODUCTION

1.6.1 Error De�nitions

Errors in the languge described in this de�nition fall into one of the following three classes:

dynamic error: An error which is detected during the execution of an EULISP program, which is a violation

of the dynamic semantics of EULISP. Dynamic errors have two classi�cations:

� Where a conforming processor is required to detect the erroneous situation or behaviour and

report it. This is signi�ed by the phrase an error is signaled. The condition class to be signaled

is speci�ed.

� Where a conforming processor might or might not detect and report upon the error. This is

signi�ed by the phrase . . . is an error. Such errors should be detected and reported.

These errors must be dealt with by a conforming processor so as to satisfy the following requirements:

identi�cation: Every error is related to a condition class which has a unique identi�cation in this

de�nition. Further identi�cation of the error must be provided by the parameterization of the

condition object. A processor is permitted to identify and deliver errors over and above those

de�ned in this document. These errors are implementation-de�ned.

handling: Where an error must be signaled, the processor must indicate, in an implementation-de�ned

way, that a particular error has arisen. A conforming EULISP program can rely on the fact that the

error is signaled. An implementation can signal an error continuably. This is an implementation-

de�ned extension.

environmental error: An error which is detected by the con�guration supporting the EULISP processor.

static error: An error which is detected during the preparation of a EULISP program for execution, such

as a violation of the syntax or static semantics of EULISP by the EULISP program under preparation.

NOTE|The violation of the syntatic or static semantic requirements is not an error, but an

error might be signaled by the program performing the analysis of the EULISP program.

1.7 Compliance

An EULISP processor can conform at any of the three levels de�ned in section 2.2. Thus a level-0 conforming

processor must support all the basic expressions, classes and class operations de�ned at level-0. A level-1

conforming processor must support all the basic expressions, classes, class operations and modules de�ned at

level-1. A level-2 conforming processor must support all the classes, class operations and all of the modules

de�ned at level-2.

The following rules govern the conformance of a processor at a given level.

� A conforming processor must correctly process all programs conforming both to the standard at the

speci�ed level and the implementation-de�ned features of the processor.

� A conforming processor should o�er a facility to report the use of an extension which is statically

determinable solely from inspection of a program, without execution. (It is also considered desirable

that a facility to report the use of an extension which is only determinable dynamically be o�ered.)

A conforming EULISP program can conform at any of the three levels de�ned in section 2.2. Thus a level-0

conforming program is one which observes the syntax and semantics de�ned for level-0. A level-0 conforming

program might not conform at level-1. A strictly-conforming level-0 program is one that also conforms at

level-1. A level-1 conforming program observes the syntax and semantics de�ned for level-1. A level-1

conforming program is also a level-2 conforming program. Hence, by extension, a level-0 strictly-conforming

program is also a level-2 conforming program.

1.8 Conventions 11

In addition, a conforming program at any level must not use any extensions implemented by a language

processor, but it can rely on implementation-de�ned features.

The documentation of a conforming processor must include:

� A list of all de�nitions or values for the implementation-de�ned features of the language standard.

� A list of all the features of the language standard which are dependent on the processor and not

implemented by this processor due to non-support of a particular facility, where such non-support is

permitted by the standard.

� A list of all the features of the language implemented by this processor which are extensions to the

standard language.

� A statement of conformity, giving the complete reference of the language standard with which confor-

mity is claimed, and, if appropriate, the level of the language supported by this processor.

1.8 Conventions

1.8.1 Layout and Typography

Both layout and fonts are used to help in the description of EULISP. Here are some examples of entries

describing special forms, functions and macros:

(special-form-name special-form-arguments) ! result-class level-88 special form

(standard-function-name standard-function-arguments) ! result-class level-88 function

(macro-name macro-arguments) level-88 macro

(generic-function-name generic-function-arguments) ! result-class level-88 generic

(generic-function-name signature) ! result-class level-88 generic-function-name method

(defining-form-name de�ning-form-arguments) level-88 de�ning form

condition-class-name(condition-superclass-name) level-88 condition

1.8.2 Meta-language

The terms used in the following descriptions are de�ned in section 1.9.

A standard function denotes a constant module binding of the de�ned name. In addition, some operators

are categorized as predicate, constructor, accessor or updator functions. These categories are all specializa-

tions of standard or generic function. No additional class information is implied. The notation is simply

intended as a guide. All the de�nitions in this document are bindings in some module except for the special

form operators, which have no bindings anywhere. All bindings and all the special form operators can be

renamed.

Frequently, a class-descriptive name will be used in the argument list of a function description to indicate

a restriction on the domain to which that argument belongs. In the case of a function, it is an error to call

it with a value outside the speci�ed domain. In the case of a generic function, the domain can be widened

arbitrarily by the de�nition of new methods, similarly the range. Thus the use of a class-descriptive name

in the context of a generic function de�nition de�nes the intention of the de�nition, and is not a policed

restriction.

If it is required to indicate repetition, the notation: expression

�

and expression

+

will be used for zero or

more and one or more occurrences, respectively. The arguments in some function descriptions are enclosed

in square brackets|graphic representation \[" and \]". This indicates that the argument is optional. The

accompanying text will explain what default values are used. For convenience in dealing with numerical

signatures, the de�nition observes the mathematical convention that

12 1 INTRODUCTION

natural � integer � rational � real � complex

The following shorthand is used for di�erent kinds of numbers: z for complex, x for the computational

approximation to real (that is oating point), q for rational, i for integers and n for natural numbers.

However, this implies no constraint on the class hierarchy for numbers.

The result-class of an operation, except in one case, refers to a primitive or a de�ned class described in this

de�nition. The exception is for predicates. Predicates are de�ned to return either the empty list|written

()|representing the boolean value false, or any value other than (), representing true. Although the class

containing this set of values is not de�ned in the language, notation is abused for convenience and boolean is

de�ned, for the purposes of this report, to mean that set of values. If the true value is a useful value, it is

speci�ed precisely in the description of the function.

1.8.3 Naming

Naming conventions are applied in the descriptions of primitive and de�ned classes as well as in the choice

of other function names. Here is a list of the conventions and some examples of their use.

\binary-" pre�x: The two argument version of a n-ary argument function. There is not always a corre-

spondence between the root and the name of the n-ary function, for example binary-plus is the two

argument (generic) function corresponding to the n-ary argument + function.

\-class" su�x: The name of a metaclass of a set of related classes. For example, function-class, which

is the metaclass of function, generic-function and any of their subclasses and condition-class

is the class of all conditions. The exception is class itself which is the default metaclass. The pre�x

should describe the general domain of the classes in question, but not necessarily any particular class

in the set.

\generic-" pre�x: The generic version of the function named foo|usually required to allow for optional

or variable numbers of arguments to foo.

hyphenation: Function and class names made up of more than one word are hyphenated, for example,

make-vector.

\make-" pre�x: For most primitive or de�ned classes there is constructor function, which is usually named

make-class-name|except where historical precedent is strong, for example, cons is used in preference

to make-pair.

\n" pre�x: The destructive version of the function named foo is usually named nfoo, for example the

destructive version of reverse is named nreverse.

\-object" su�x: The name of a superclass of a set of related classes. For example: structure-object is

the (remote) superclass of all user de�ned structures. The pre�x should describe the general domain

of the classes in question, but not necessarily any particular class in the set.

The name of the superclass of the class whose name is the pre�x, for example structure-object.

\p" su�x: A predicate function is named by a \p" su�x if the function or class name is not hyphenated,

for instance, consp, and is named by a \-p" su�x if it is, for instance input-stream-p.

\q" su�x: The version of the function named foo that uses eq for comparison is usually named fooq.

\-ref" su�x: For each builtin or de�ned class, there is a �eld accessor named class-name-ref|where

appropriate|and a corresponding �eld updator (setter class-name-ref)|also where appropriate,

for example table-ref. This convention is broken for the functions that reference the slots of an object,

which are called slot-value and indexed-slot-value and by historical precedent the accessors to

�elds of pairs are car and cdr.

1.9 De�nitions 13

\-using-" in�x: This function name convention is used when calls are cascaded using objects derived

from the original object so that users can write methods on the relevant classes. For example,

in the case of slot-value, the class and slot description corresponding to the original object and

slot name are retrieved, and the new generic functions are called (slot-value-using-class and

slot-value-using-slot-description).

When an operation depends on a global value, such as the current input stream, the value might also be

made accessible via a function, for example (a-global-value) and can be updated using the corresponding

setter function, for example ((setter a-global-value) another-value).

1.9 De�nitions

This set of de�nitions of basic terms and object-oriented terms, which will be used throughout this document,

is self-consistent but might not agree with notions accepted in other language de�nitions. The terms are

de�ned in alphabetical rather than dependency order and where a de�nition uses a term de�ned elsewhere

in this section it is written in italics. Some of the terms de�ned here are redundant. Names in courier font

refer to entities de�ned in the language.

1.9.1 Basic De�nitions

applicable object: An applicable object is an instance of any subclass of the class function.

association list: An association list is a proper list whose car �elds contain objects of class pair.

binding: A location containing a value.

binding form: Any form or any macro expression expanding into a form which causes the creation of inner

dynamic or inner lexical bindings.

bound variable: A variable x is bound in an expression E if x occurs in the scope of a de�ning form which

creates inner-lexical bindings or of a binding form occurring in E whose variable binding list contains

x.

closure: The closure of an expression E is the set of all free variables that occur in E.

congruent:

continuation: A continuation is a function of one parameter which represents the rest of the program. For

every point in a program there is the remainder of the program coming after that point. This can be

viewed as a function of one argument awaiting the result of that point. Such a function is called a

continuation.

converter function:

de�ning form: Any form or anymacro expression expanding into a formwhose operator is one of defclass,

defcondition, defconstant, defgeneric, deflocal, defmacro, defstruct, defun, defvar.

dynamic environment: The inner and top dynamic environment, taken together, are referred to as the

dynamic environment.

dynamic extent: A lifetime constraint, such that the entity is created on control entering an expression

and destroyed when control exits the expression. Thus the entity only exists for the time between

control entering and exiting the expression.

dynamic scope: An access constraint, such that the scope of the entity is limited to the dynamic extent of

the expression that created the entity.

14 1 INTRODUCTION

dynamically closer: If a form F2 is executed in the dynamic extent of a form F1 then within the dynamic

extent of F2, F2 is dynamically closer than F1.

extent: That lifetime for which an entity exists. Extent is constrained to be either dynamic or inde�nite.

free variable: A variable x is free in an expression E if x does not occur in the lexical scope of any de�ning

which creates inner-lexical bindings or any binding form occurring in E whose variable binding list

contains x.

function: A function comprises at least: an expression, a set of identi�ers, which occur in the expression,

called the parameters and the closure of the expression with respect to the lexical environment in which

it occurs, less the parameter identi�ers. Note: this is not a de�nition of the class function.

identi�er: An identi�er is the syntactic representation of a variable.

improper list: An improper list is a list whose �nal pair contains something other than the empty list in

its cdr �eld.

inde�nite extent: A lifetime constraint, such that the entity exists for ever. In practice, this means for as

long as the entity is accessible.

inde�nite scope: An access constraint, such that the scope of the variable is unlimited.

inner dynamic: Inner dynamic bindings are created by dynamic-let, referenced by dynamic and modi-

�ed by dynamic-setq. Inner dynamic bindings extend|and can shadow|the dynamically enclosing

dynamic environment.

inner lexical: Inner lexical bindings are created by lambda and let/cc, referenced by variables and modi-

�ed by setq. Inner lexical bindings extend|and can shadow|the lexically enclosing lexical environ-

ment. Note that let/cc creates an immutable binding.

lexically closer: If a form F2 occurs in a form F1, then any entities created by F2 are lexically closer than

those of F1.

lexical environment: The inner and top lexical environment of a module are together referred to as the

lexical environment except when it is necessary to distinguish between them.

lexical scope: An access constraint, such that the scope of the entity is limited to the textual region of the

form creating the entity. See also lexically closer and shadow.

must: A verbal form used to introduce a required property. All conforming processors must satisfy the

property.

macro: A macro is a function. A macro is distinguished from a function by when it is used: macro functions

are only used during the syntax expansion of modules to transform expressions.

macro expression: A form whose operator names a macro expansion function.

proper list: A proper list is a list whose �nal pair contains the empty list in its cdr �eld, or is just the

empty list.

scope: That part of the extent in which a given variable is accessible. Scope is constrained to be lexical,

dynamic or inde�nite.

setter function: The function associated with the function that accesses a place in an entity, which changes

the value stored that place.

1.9 De�nitions 15

shadow: If two entities are created for which the same means of reference is used, and either the form

creating one occurs lexically in the form creating the other (where the means of reference has lexical

scope) or the form creating one is executed in the dynamic extent of the form creating the other (where

the means of reference has dynamic scope), then the outer entity is shadowed by the inner one.

should: A verbal form used to introduce a strongly recommended property. Implementers of processors are

urged (but not required) to satisfy the property.

symbol: A symbol is a data structure, often used to represent an identi�er.

top dynamic: Top dynamic bindings are created by defvar, referenced by dynamic and modi�ed by

dynamic-setq. There is only one top dynamic environment.

top lexical: Bindings are created in the top lexical environment of a module: those made by defclass,

defcondition, defconstant, defgeneric, defmacro, defstruct and defun are immutable and those

made by deflocal are mutable. All such bindings are referenced by variables and those made by

deflocal are modi�ed by setq. Each module de�nition has its own distinct top lexical environment.

variable: A variable denotes a binding and is a means to reference the value stored in the binding.

1.9.2 Object-oriented De�nitions

This set of de�nitions of terms relating to classes, objects and generic functions, which will be used throughout

this document, is self-consistent but might not agree with notions accepted in other language de�nitions.

The terms are de�ned in alphabetical rather than dependency order and where a de�nition uses a term

de�ned in this or the previous section it is written in italics. Some of the terms de�ned here are redundant.

Names in courier font refer to entities de�ned in the language.

accessor: An accessor is a association of a reader and a writer.

applicable method: A method is applicable for a particular set of arguments if each element in its signature

is a superclass of the class of the corresponding argument.

applicable method list: An applicable method list is a list of all the methods applicable for a particular

list of arguments to a generic function, sorted according to method signature speci�city.

class: A class is an object which describes the structure and behavior of a set of objects which are its

instances. A class object contains inheritance information and a set of slot descriptions which de�ne

the structure of its instances. A class object is an instance of a metaclass. All classes in EULISP are

subclasses of the class named object, and all instances of class are classes.

class precedence list: Each class has a linearized list of all its superclasses, direct and indirect, beginning

with the class itself and ending with the root of the inheritance graph, the class object. This list

determines the speci�city of slot and method inheritance. A class's class precedence list may be accessed

through the function class-precedence-list. The rules used to compute this list are determined by

the class of the class through methods of the generic function compute-class-precedence-list.

class option: A keyword and its associated value applying to a class appearing in a class de�nition form,

for example: the predicate keyword and its value, which de�nes a predicate function for the class

being de�ned.

constructor: A constructor is a function which creates an instance of a particular class.

direct instance: A direct instance of a class class

1

is any object whose class is class

1

.

direct slot description: A class's direct slot descriptions are de�ned speci�cally for the class.

16 1 INTRODUCTION

direct subclass: A class

1

is a direct subclass of class

2

if class

1

is a subclass of class

2

, class

1

is not identical

to class

2

, and there is no other class

3

which is a superclass of class

1

and a subclass of class

2

.

direct superclass: A direct superclass of a class class

1

is any class for which class

1

is a direct subclass.

discrimination: Generic function application consists of two parts: �nding a set of methods applicable to

the given set of arguments, and application of the method functions of those methods. The �rst part

is called discrimination or method lookup. Generic functions have an associated function called the

discriminating function which implements the discrimination. Users can de�ne new classes of generic

functions which implement discrimination in new ways.

generic function: Generic functions are functions for which the method executed depends on the class of

its arguments. A generic function is de�ned in terms of methods which describe the action of the

generic function for a speci�c set of argument classes called the method's signature.

indirect instance: A indirect instance of a class class

1

is any object whose class is a subclass of class

1

.

indirect slot description: A slot description is indirect for a class

1

if the slot description is de�ned for

class

1

, but was originally de�ned for another class

2

which is a superclass of class

1

and incorporated

into class

1

through inheritance. An indirect slot description is also called an inherited slot description.

indirect subclass: A class

1

is an indirect subclass of class

2

if class

1

is a subclass of class

2

, class

1

is not

identical to class

2

, and there is at least one other class

3

which is a superclass of class

1

and a subclass

of class

2

.

inheritance graph: A directed labelled acyclic graph whose nodes are classes and whose edges are de�ned

by the subclass relations between the nodes. This graph has a distinguished root, the class object,

which is a superclass of every class.

inherited slot description: See indirect slot description.

initarg: A symbol used as a keyword in an initlist to mark the value of some slot. Used in conjunction with

make-instance and the other object initialization functions to specify initial slot values. An initarg

may be declared for a slot in a class de�nition form using the initarg slot option.

initform: A form which is evaluated to produce a default initial slot value. Initforms are closed in their

lexical environments and the resulting closure is called an initfunction. An initform may be declared

for a slot in a class de�nition form using the initform slot option.

initfunction: A function of no arguments whose result is used as the default value of a slot. Initfunctions

capture the lexical environment of an initform declaration in a class de�nition form.

initlist: A list of alternating keywords and values which describes some not-yet instantiated object. Gen-

erally the keywords correspond to the initargs of some slot description of some class.

instance: Every object is the instance of some class. An instance thus describes an object in relation to its

class. An instance takes on the structure and behavior described by its class. An instance can be eithe

direct or indirect.

instantiation graph: A directed graph whose nodes are objects and whose edges are de�ned by the instance

relations between the objects. This graph has only one cycle, an edge from the class class to itself.

The instantation graph is a tree and the class class is the root.

metaclass: A metaclass is a class object whose instances are themselves classes. All metaclasses in EULISP

are instances of subclasses of the class class, which is an instance of itself. Since they are classes, all

metaclasses are also subclasses of class. class is a metaclass.

1.9 De�nitions 17

method: A method describes the action of a generic function for a particular list of argument classes called

the method's signature. A method is thus said to add to the behavior of each of the classes in its

signature. Methods are not functions but objects which contain, among other information, a function

representing the method's behavior.

method-combination: The applicable method list for an argument list determines the next method called

by the special form call-next-method: for any method in the list, the next method is simply the

method following it in the list.

method function: A function which implements the behavior of a particular method. Method functions

have special restrictions which do not apply to all functions: their formal parameter bindings are

immutable, and the special forms call-next-method and next-method-p are only valid within the

lexical scope of a method function.

method lookup: See discrimination.

method speci�city: A signature signature

1

is more speci�c than another signature

2

if the �rst class in

signature

1

is a subclass of the �rst class in signature

2

, or, if they are the same, the rest of signature

1

is

more speci�c than the rest of signature

2

.

multi-method: A method which specializes on more than one argument. All methods in this de�nition are

multi-methods.

new instance: A newly allocated instance, which is distinct, but can be isomorphic to other instances.

object: Any entity that can be bound to a variable|including entities from outside LISP's memory. Every

object is an instance of some class.

reader: A reader is a function of one argument which returns the value of a particular slot in instances of

a particular class.

reective: A system which can examine and modify its own state is said to be reective. EULISP is reective

to the extent that it has explicit class objects and metaclasses, and user-extensible operations upon

them.

self-instantiated class: A class which is an instance of itself. In EULISP, class is the only example of a

self-instantiated class.

signature: A signature is a list of classes derived from a list of arguments, or the list of classes for which a

method is applicable.

slot: A named component of an object which can be accessed using the function slot-value. Each slot of

an object is described by a slot description object associated with the class of the object. When we refer

to the structure of an object, this usually means its its set of slots.

slot description: A slot description object describes a slot in the instances of a class. This description

includes the slot's name, its logical position in instances, and a way to determine its default value.

A class's slot descriptions may be accessed through the function class-slot-descriptions. A slot

description can be either a direct or indirect.

slot option: A keyword and its associated value applying to one of the slots appearing in a class de�nition

form, for example: the accessor keyword and its value, which de�nes a function used to read or write

the value of a particular slot.

specialize: A verbal form used to describe the creation of a more speci�c version of some entity. Normally

applied to classes.

18 2 STRUCTURE AND INTERPRETATION

specialize on: A verbal form used to describe relationship of methods and the classes speci�ed in their

signatures.

subclass: The behavior and structure de�ned by a class class

1

are inherited by a set of classes which are

termed subclasses of class

1

. A class is also de�ned as a subclass of itself, for terminological brevity. A

subclass can be either direct or indirect.

superclass: A class

1

is a superclass of class

2

i� class

2

is a subclass of class

1

. Thus a class is both a subclass

and a superclass of itself. A superclass can be either direct or indirect.

textual slot description: A list of alternating keywords and values (starting with a keyword) which rep-

resents a not-yet-created slot description during inheritance.

writer: A writer is a function of two arguments which changes the value of a particular slot in instances of

a particular class.

2 Structure and Interpretation

2.1 Overview

The operator and the operands of forms are treated in a uniform manner. Here, EULISP continues the

tradition exempli�ed in Scheme, T, LISP/VM and Cambridge LISP[Fitch & Norman, 1977]. In common with

other LISP-like languages, function parameters are passed by value, and, in common with Scheme and some

other Lisps, functions themselves are �rst-class values.

EULISP breaks with LISP tradition in describing all its types (in fact, classes) in terms of an object system.

This is called The EULISP Object System, or TE�O�. TE�O� incorporates elements of the Common Lisp

Object System (CLOS) [Bobrow et al., 1988], ObjVLisp [Cointe, 1987], Oaklisp [Lang & Pearlmutter, 1988],

and MicroCeyx [Chailloux et al, 1987]. The greatest debt of TE�O� is to CLOS, from which it takes the

ideas of generic functions and multi-methods. In addition, most of the terminology, the names and format

of the user-level macros, and the names of many of the functions in the internal protocol are inspired by

CLOS. From ObjVLisp, TE�O� takes the principle of a reective architecture, which emphasizes the power

of metaclasses as an implementation strategy. From Oaklisp, TE�O� takes the idea of anonymous classes.

Finally, from MicroCeyx, TE�O� takes the idea of a small, highly e�cient kernel tightly integrated with

the rest of the language. In TE�O�, this integration is achieved through the total merging of types with

classes and message-passing through normal function application. Classes are �rst-class values. The class

structure integrates the primitive classes describing fundamental datatypes, the de�ned classes and user-

de�ned classes. The function class-of, given an object, returns the most speci�c class of which it is an

instance.

Modules and classes are the building blocks of both the EULISP language and of applications written

in EULISP. The module system exists to limit access to items by name. That is, modules allow for hidden

de�nitions. Each module de�nes a fresh, empty, lexical environment. This fresh environment is the top-

lexical environment of that module. A de�ning form creates a new binding in the top lexical environment

of the lexical environment in which it is evaluated.

Continuations are �rst-class in EULISP, but they are not as general as in Scheme. They are weaker because

they can only be used within the dynamic extent of their creation. That also implies they can only be used

once. These weaker continuations are suitable for controlling simple non-local exits and form the basis of

the condition system of handlers. Functions, too, are �rst-class, comprising the environment of de�nition

(the closure of the de�nition) and an expression as described by Landin in ISWIM [Landin, 1966].

Dynamically scoped bindings can be created in EULISP, but their use is much more restricted than in

most Lisps up to now|except Scheme. EULISP enforces a strong distinction between lexical bindings and

dynamic bindings by requiring the use of a special form (called dynamic-let) for their creation and two

other special forms (called dynamic and dynamic-setq) for access and update, respectively.

2.2 Language Structure 19

Multiple control threads can be created in EULISP using the function make-thread and orderly access to

data shared between more than one control thread can be mediated by means of semaphores.

2.2 Language Structure

The EULISP de�nition comprises the following items:

Level-0 comprises all the level-0 functions, macros and special forms de�ned in section 3.1 and all the classes

and operations upon them de�ned in section 4.1. The class system can be extended by user-de�ned

structure classes, and generic functions.

Level-1 extends level-0 with the functions, macros and special forms de�ned in section 3.2 and the classes

de�ned in section 4.2. The class system can be extended by user-de�ned classes and metaclasses. The

implementation of level-1 is not necessarily written or writable as a conforming level-0 program.

Level-2 has only been partiallt speci�ed at the time of writing and is therefore not included in this version

of the de�nition.

A level-0 function is a function de�ned by this report to be part of a conforming processor for level-0, as is

a level-0 generic function. A (generic) function de�ned in terms of level-0 operations is an example of a level-0

application. Note that, apart from new special forms, the functionality for all level-1 (generic) functions

can be de�ned in terms of level-0 operations. Thus, any level-1 (generic) function is a level-0 application.

The same constructive de�nition applies to level-2 (generic) functions being level-1 applications.

Much of the functionality of EULISP is de�ned in terms of modules. These modules might be available

(and used) at any appropriate level, but certain modules are required at certain levels. Whenever a module

depends on the operations available a given level, that dependency will be speci�ed. See section 3.2 and

section 3.3 for actual requirements. The library modules are de�ned in section 6.

2.3 Lexical Characteristics

This section gives informal details of the lexical format of EULISP programs and this is de�ned precisely in

the formal syntax given in appendix A. Case is distinguished both in character and string constants and

in identi�ers, so that variable-name and Variable-name are di�erent, but where a character is used in

a positional number representation (e.g. #x3Ad) the case is ignored. Thus, case is also signi�cant in this

document and, as will be observed later, all the special form and standard function names are lower case.

2.3.1 Identi�ers

Identi�ers in EULISP are very similar lexically to identi�ers in other Lisps and in other programming lan-

guages. Informally, an identi�er is a sequence of alphabetic, ideographic, special and digit characters starting

with a character that is not a digit. Appendix A.11 de�nes these character classes. However, because the

common notations for arithmetic operations, the glyphs for plus (+) and minus (-), are necessary to indicate

the sign of a number, they are also classi�ed as identi�ers. In this section, and throughout this document,

the names for individual character glyphs are those used in ISO/IEC DIS 646:1990.

Sometimes, it might be desireable to incorporate characters in an identi�er that are normally not legal

constituents. The aim of escaping in identi�ers is to change the meaning of particular characters so that

they can appear where they are otherwise illegal.

Identi�ers containing characters that are not ordinarily legal constituents can be written by delimiting

the sequence of characters by multiple-escape, the glyph for which is called vertical bar (|) in the standard

tokenisation scheme. The multiple-escape denotes the beginning of an escaped part of an identi�er and the

next multiple-escape denotes the end of an escaped part of an identi�er. A single character that would

otherwise not be a legal constituent can be written by preceding it with single-escape, the glyph for which

is called reverse solidus (\). Therefore, single-escape can be used to incorporate the multiple-escape or the

20 2 STRUCTURE AND INTERPRETATION

single-escape character in an identi�er, delimited (or not) by multiple-escapes. For example, |).(| is the

identi�er whose name contains the three characters #\), #\. and #\(, and a|b| is the identi�er whose name

contains the characters #\a and #\b. The sequence || is the identi�er with no name, and so is ||||, but

|\|| is the identi�er whose name contains the single character |, which can also be written \|, without

delimiting multiple-escapes.

Any identi�er can be used as a literal, in which cases it denotes a symbol.

2.3.2 Whitespace and Comments

Whitespace characters are #\space and #\newline. The character #\newline is also used to represent end

of record for con�gurations providing such an input model, thus, a reference to newline in this de�nition

should also be read as a reference to end of record. The only use of whitespace is to improve the legibility

of programs for human readers. Whitespace separates tokens and is only signi�cant in a string or when it

occurs escaped within an identi�er.

A comment is introduced by the comment-begin glyph, which is called semicolon (;) and continues up to,

but does not include, the end of the line. Hence, a comment cannot occur in the middle of a token because

of the whitespace in the form of the newline. Thus a comment is equivalent to whitespace.

2.3.3 Numeric Literals

There are two kinds of primitive numeric literals: integers and oating point numbers. Instances of literals of

the other number classes are constructed from integers and oats: a rational is two integers separated by the

ratio-separator glyph, which, in the standard tokenisation scheme is called solidus (/) and a complex number

is a pair of numbers distinguished by the pre�x #C, for example #C(1 2), #C(1.4 2.3) and #C(1/2 3.0).

The parts of a complex can be any of integer, rational or float and each part can be of a di�erent

class. Integers can be read or written in any base up to base 36. For convenience, base 2, base 8 and base

16 have distinguished notations|#b, #o and #x, respectively. The general notation for an arbitrary base is

#baser, where base is an unsigned decimal number. Informal details of external representations are given in

section 2.9 and the formal de�nitions are given in appendix A.

2.3.4 Character and String Literals

Character literals are denoted by the extension glyph, which is called hash (#), in the standard tokensiation

scheme, followed by the character-extension glyph, which is called reverse solidus (\) in the standard token-

siation scheme, followed by the character name. Examples of character literals are #\a, #\\ and #\newline,

which denote respectively the characters a, \ and the newline character. If a character either does not have

a name or does not have a name that can be written and then reconstructed by reading, it can be speci�ed

by giving the hexadecimal code of its position in the standard character set by means of between one and

four hexadecimal digits. Examples of such character literals are #\x0, #\xabcd, which denote, respectively,

the characters at position 0 and at position 43981 in the character set current at the time of reading or

writing. String constants are delimited by the string-begin and string-end glyphs, which are both de�ned as

the glyph called quotation mark ("), in the standard tokenisation scheme.

Sometimes it might be desirable to include string delimiter characters in strings. The aim of escaping

in strings is to ful�ll this need. The string-escape glyph is de�ned as reverse solidus (\) in the standard

tokenisation scheme. String escaping can also be used to include certain other characters that would otherwise

be di�cult to denote. Here is a summary of string-escape digrams:

� alert, or \a, denotes the alert character in a string.

� backspace, or \b, denotes the backspace character in a string.

� delete, or \d, denotes the delete character in a string.

� formfeed, or \f, denotes the formfeed character in a string.

2.4 Classes, Objects and Generic Functions 21

� linefeed, or \l, denotes the linefeed character in a string.

� newline, or \n, denotes the newline character in a string.

� return, or \r, denotes the return character in a string.

� tab, or \t, denotes the tab character in a string.

� vertical-tab, or \v, denotes the vertical-tab character in a string.

� string-begin, or \", denotes the string-begin character in a string.

� string-end, or \", denotes the string-end character in a string.

� string-escape, or \\, denotes a single occurrence of string-escape in a string.

� string-hex, or \x, followed by up to four hexadecimal digits, denotes the character associated with that

position in the current character-set.

Here are some examples of string literals.

"a\nb" contains #\a, #\newline and #\b.

"c\\" contains #\c and #\\.

"\x1 " contains #\x1 followed by #\space.

"\xabcde" contains #\xabcd followed by #\e.

"\x1\x2" contains #\x1 followed by #\x2.

"\x12+" contains #\x12 followed by #\+.

"\xabcg" contains #\xabc followed by #\g.

"\x00abc" contains #\xab followed by #\c.

2.4 Classes, Objects and Generic Functions

The basic classes of EULISP are elements of the object system class hierarchy, which is shown in Figure 1.

Indentation indicates a subclass relationship to the class under which the line has been indented, for example,

condition is a subclass of object and the name following the class is the name of the metaclass, for example,

the metaclass of condition is condition-class. The names given here correspond to the bindings of names

to classes as they are exported from the level-0, level-1 or level-2 modules.

The root of the instantiation hierarchy is the class class, which is an instance of itself. The root of the

inheritance hierarchy is the class object. class de�nes the basic methods for access and modi�cation of

elements of objects. The designated class of each class is a superclass of the actual class of the class.

2.4.1 Objects

In EULISP, every object in the system has a speci�c class. Classes themselves are �rst-class objects, and thus

have classes of their own. In this respect EULISP di�ers from statically-typed object-oriented languages such

as C

++

and �CEYX.

Programs written using TE�O� typically involve the design of a class hierarchy, where each class represents

a category of entities in the problem domain, and a protocol, which de�nes the operations on the objects in

the problem domain.

A class de�nes the structure and behavior of its instances. Structure is the information contained in the

class's instances and behavior is the way in which the instances are treated by the protocol de�ned for them.

22 2 STRUCTURE AND INTERPRETATION

object class

character class

class class

condition-class class

function-class class

number-class class

structure-class class

condition condition-class

execution-condition condition-class

stream-condition condition-class

arithmetic-condition condition-class

...

function function-class

continuation function-class

generic-function function-class

method class

null class

number class

...

pair class

stream class

string class

structure structure-class

symbol class

table class

thread class

vector class

Figure 1: Level-0 initial class hierarchy

A protocol de�nes the operations which can be applied to instances of a set of classes. This protocol is

typically de�ned in terms of a set of generic functions, which are functions whose behavior depends on the

classes of their arguments. The particular class-speci�c behavior is partitioned into separate units called

methods. A method is not a function itself, but is a closed expression which is a component of a generic

function.

2.4.2 Classes

A class describes a set of objects, called instances, in the problem domain. Classes de�ne the structure of

their instances through a set of slots which each instance contains. Classes also de�ne the behavior of their

instances through the methods which specialize on them.

Inheritance is implemented through classes. Each class has a class precedence list, a linearized list of all

the class's superclasses, which de�nes the classes from which the class inherits structure and behavior. Slots

and methods de�ned for a superclass will also be de�ned for a class, unless overridden by methods de�ned

on subclasses of the class.

In EULISP, classes are �rst-class objects and thus have classes of their own. These classes of classes are

called metaclasses. Extensions, such as multiple inheritance, support for the change-class functionality of

CLOS, and persistent objects can be supported through metaclasses. In addition, metaclasses can provide

new kinds of classes with reduced power but increased e�ciency; the structure-class is an example.

2.4 Classes, Objects and Generic Functions 23

Classes are de�ned using the defstruct, defcondition and defclass de�ning forms, which are described

in detail in sections 3.2.6. New metaclasses are de�ned using defclass.

2.4.3 Inheritance

The structure and behaviour de�ned for a class is inherited by all of its subclasses. In practice, this means

that an instance of a class will contain all the slots de�ned directly in the class as well as all of those de�ned

in the class's superclasses. In addition, a method de�ned for instances of a particular class will be applicable

for instances of all of the class's subclasses.

TE�O� level-0 provides only single inheritance, meaning that a class can have exactly one superclass|

but inde�nitely many subclasses. In fact, all classes in the level-0 class inheritance tree have exactly one

superclass except the root class object which has no superclass.

Metaclasses control the structure and behaviour of their instances and the representation of their metain-

stances. It might not be possible to form a subclass link between two classes of di�erent metaclasses, or

it might only be possible after some internal changes are made. The function, metaclass-compatible-p

provides a means for a metaclass programmer to determine whether two metaclasses are or can be made

compatible and make-metaclass-comaptible carries out the necessary changes.

2.4.4 Slots

The components of an object are called its slots. Each slot of a class is represented by a slot description

object, which de�nes where the slot is to be stored, how it can be accessed, and its default value. At level-1

and above the slot description mechanism is modi�able and extensible.

Users can de�ne new slot description classes to support extensions such as the facets found in many

knowledge representation languages, multi-valued slots, typed slots, and slots whose values are not stored in

the instance.

Slots are de�ned within a defstruct, defcondition or defclass de�ning form, which are described in

detail in section 4.2.2. New slot description classes are de�ned by defclass.

2.4.5 Generic Functions

A generic function is a function whose behaviour is determined by the classes of its arguments. Each potential

behavior is de�ned by a method, which speci�es a signature of classes for which it is applicable. A program's

protocol is a set of generic functions and the relationships between them.

Generic functions replace the send construct found in many object-oriented languages. In contrast to

sending a message to a particular object, which it must know how to handle, the method executed by a

generic function is determined by all of its arguments. Methods which specialize on more than one of their

arguments are called multi-methods.

Generic functions are de�ned using the defgeneric de�ning form, which creates a named global generic

function, and generic-lambda, which creates an anonymous generic function. These forms are described in

detail in 3.1.12.

2.4.6 Methods

A method describes the behaviour of a generic function for a particular sequence of classes, called the

method's signature. Methods are not functions themselves, but objects attached to a generic function

containing closed expressions.

Like slots, methods may be inherited. That is, if a method is applicable for a class C

1

, it is also applicable

for all of C

1

's subclasses as well. New methods may also be de�ned for these subclasses, and these methods

are said to be more speci�c than the methods de�ned on the super classes. However, the more general

methods are accessible from the more speci�c through the call-next-method form. Thus, behavior can be

inherited and extended in subclasses.

24 2 STRUCTURE AND INTERPRETATION

Methods are de�ned using the defmethod macro, which adds a new method to a generic function. This

macro is described in detail in 4.1.13.

2.5 Conditions

The condition system owes much to the Common Lisp error system [Pitman, 1988] and to the Standard ML

exception mechanism. It is a simpli�cation of the former and an extension of the latter. Following standard

practice, this document has de�ned the behaviour of functions in terms of their normal behaviour. Where an

exceptional behaviour might arise, this has been de�ned in terms of a condition. However, not all exceptional

situations are errors. Following Pitman, we use condition to be a kind of occasion in a program when an

exceptional situation has been signaled. An error is a kind of condition|error and condition are also used

as terms for the objects that describe exceptional situations. A condition can be signaled continuably or

non-continuably.

A condition class is de�ned with defcondition or defclass. The de�nition of a condition causes the

creation of a new class of condition, including a new condition class constructor. A number of conditions

are de�ned at level-0 (see section 3.1.9). A condition is signaled using the function signal, which takes an

instance of a condition and a resume continuation or the empty list, signifying a non-continuable condition,

as arguments. A condition can be handled using the special form with-handler, which takes a function|the

handler function|and a sequence of forms to be protected (see section 3.1).

2.6 Modules

A module de�nition creates two, new, empty lexical environments|the internal and the external top-lexical

environments of the module. All the de�nitions in the module body are stored in the former along with

those de�nitions shared (by importation) with other modules. The latter shares those de�nitions from the

internal top-lexical that are exported and also those of all the exported modules that are not imported.

The names of modules are bound in a disjoint binding environment which is only accessible via the module

de�nition form. That is to say, modules are not �rst-class. The representation of the module environment

is implementation-de�ned. The body of a module de�nition comprises an import directive followed by a

syntax directive and a sequence of de�nitions, expressions and export directives. The processing of each of

these is now discussed in detail.

2.6.1 Imports

The import directive is expressed in terms of except, only and rename, the interpretation of which is de�ned

in section 3.1.12. The import directive speci�es which names from which other modules are to be visible in

the current module.

In processing import directives, every name should be thought of as a pair of (module-name local-name)

coupled with some attributes (mutable, immutable, syntax, value). Intuitively, a namelist of module-

name/local-name pairs is generated by giving the module name and then �ltered by except, only and

rename. In addition, all names with a syntax attribute are �ltered out because syntax functions can have

no use at execution time. In an import directive, when a namelist has been �ltered, the names are regarded

as being de�ned in the internal top-lexical environment of the module into which they have been imported.

Should any two instances of local-name have di�erent module-names, then there is a name clash which is an

error.

2.6.2 Syntax

The syntax section de�nes the expansion functions for the body of the module. This section comprises an

import directive for access to expanders de�ned in other modules and a sequence of de�nitions. The import

directive is processed as described above except that all names which do not have a syntax attribute are

�ltered out. The body of the syntax section is expanded according to the syntax environment de�ned by the

2.6 Modules 25

import directive of the syntax section. All the resulting functions are added to the syntax environment and

the the body of the module is then expanded according to that environment. The basic expansion mechanism

examines each form in the module body. If the name of the operator of the form is bound in the syntax

environment then the associated expansion function is called with a list of the (unevaluated) operands of

the form. If the the operator is not de�ned in the syntax environment, each of the sub-forms is examined

and expanded recursively.

NOTE|the expansion mechanism is still an open topic. Both syntactic closures and the tech-

niques described in \Macros That Work" have been examined, but both su�er from problems,

the latter in particular since they don't work.

2.6.3 Exports

The export directives are expressed in three ways: export, which is used to specify individual names with

a value attribute, export-syntax, which is used to specify individual names with a syntax attribute, and

expose, which is used to specify collections of names from whole modules (see the example in Figure 2).

The export directives of a module taken together specify which names from this and other modules are to

be exported from this module.

Processing export directives employs the same model as for imports, namely, a module-name/local-name

pair with the same �ltering operations. When the namelist has been �ltered, the names are added to the set

of exportations of this module. It is the union of all the export directives in the body of a module de�nes

the externally visible top-lexical environment of the module. Should any two instances of local-name have

di�erent module-names, then there is a name clash, which is an error. Note that the external top-lexical

environment might not be a subset of the internal top-lexical environment because the external one can

reference modules which have not been imported.

2.6.4 De�nitions and Expressions

De�nitions in a module only contain unquali�ed names|that is, local-names, using the above terminology.

All top-lexical module bindings are only ever created once and are shared with all modules that import the

module creating the bindings. Only top-lexical bindings created by deflocal are mutable and it is an error

to modify an immutable binding. Expressions, that is non-de�ning forms, are collected and evaluated in

order of appearance at the end of the module de�nition process when the top-lexical environment is complete.

The exception to this is the progn form, which is descended and the forms within it are treated as if the

progn were not present.

2.6.5 Module Processing

The following steps summarize the module de�nition process:

1. The importations are checked. For each imported binding, the originating module must exist and the

desired item must be exported from it. Each binding import speci�cation contributes a new binding

to the top-lexical environment of the module being de�ned. Each such binding is checked for name-

conict, since no two imported names can be the same. Note that mutually referential modules are not

possible because of the de�nition before use requirement. Hence, the importation dependencies form

a DAG.

2. Syntax expansion of the body. The syntax section speci�es the modules required for syntax expansion

and any locally de�ned syntax. The body of the module is expanded according to the operators de�ned

in the syntax environment constructed from the syntax import directive and the local de�nitions.

3. All the de�ned variables are collected and added to the module's top-lexical environment.

4. The exportations are collected and the set of exported names is constructed.

26 2 STRUCTURE AND INTERPRETATION

5. The expanded body of the module is analysed. It is an error, if a variable in the body does not have

a binding in the top-lexical environment.

6. The module is initialized by evaluating the forms in the body in the order they appear.

(defmodule example

(classes arithmetic ;;import classes and arithmetic

(except (null) class-names) ;;all but null from class-names

(only (open) streams) ;;but just open from streams

;;exchange the names of the bindings of car and cdr

(rename ((car cdr) (cdr car)) lists))

(syntax

;;rename the binding of standard lambda as eulisp-lambda

((rename ((lambda eulisp-lambda)) level-0-syntax)

macros ;;all of macros

;;now the rede�ned lambda which was called new-lambda

(rename ((new-lambda lambda)) more-macros))

...

)

...

(expose arithmetic extras) ;;export arithmetic and extras

...

(export example-fun1 ;;but just three functions from this module

example-fun2

example-var1)

...

)

Figure 2: Example of import and export directives

An example module de�nition is given in Figure 2. The imports to this module are speci�ed in the �rst

expression: all the exports of the modules classes and arithmetic, all of module class-names except null,

nothing from module streams except open and everything from module lists|but the names of the bind-

ings of car and cdr are exchanged. Next is the syntax section which imports the modules level-0-syntax,

macros and more-macros to be used in the syntax expansion of the body. Of particular note here is the

renaming of the expander for lambda as eulisp-lambda and the subsequent renaming of new-lambda de-

�ned in more-macros as lambda. In consequence all lambda forms in the body will be expanded according

to the function new-lambda de�ned in more-macros. The remainder of the module de�nition is the body,

comprising de�nitions and export speci�cations. In the �rst export directive, the arithmetic module is

re-exported from example and the non-imported module extras is exported. In the second, example-fun1,

example-fun2 and example-var1 are exported from example. Thus, the exports of example are the above

three names and the exported names of the modules arithmetic and extras.

2.7 Threads and Semaphores

Threads provide a means for concurrent execution and semaphores o�er a mechanism to synchronize access

to data structures shared by several concurrent threads.

A semaphore is an abstract data type protecting an integer variable which can only take on non-negative

values. This is called a counting semaphore as distinct from the primitive binary semaphore. A semaphore

may be initialized with any non-negative value. The operations on a sempahore are semaphore-up and

semaphore-down, which are also widely known as signal and wait, respectively.

2.8 Numbers 27

A thread is an abstract data type protecting some implementation-de�ned data. A thread is constructed

by make-thread and its status is set to virgin. A thread is made runnable by means of thread-start.

This is a generic function to allow implementation-de�ned extensions specializing threads, but the method

for thread adds the thread to the run queue of the standard scheduler. Threads in EULISP may not be

preempted. Thus a thread cedes control to another thread explicitly via the scheduler, using the function

thread-suspend. The standard scheduler takes the next thread from its queue and, if its state is runnable,

control is given to that thread. When control returns to the scheduler, the thread ceding control is appended

to the run queue. One thread can change another thread's state to runnable by means of the function

proceed.

2.8 Numbers

Numbers can take on many forms with unusual properties, specialized for di�erent tasks, but two classes of

number normally su�ce for the majority of needs. Thus, at level-0 and level-1, only a limited set of number

classes are de�ned. A general, user-extensible number mechanism is introduced at level-2.

NOTE|At present the class hierarchy and number operations for level-2 have not been �nal-

ized, but will probably include complex, variable-precision-float, integer-mod-n and

integer-mod-p.

2.8.1 Level-0 Numbers

In Figure 3 is an example of what the initial number class hierarchy for level-0 might look like. The inheritance

relationships by this diagram are part of this de�nition, but it is not de�ned whether they are direct or not.

For example, integer and float are not necessarily direct subclasses of number and the metaclass of each

number class might be a subclass of number-class. Since there are only two concrete number classes at

level-0, coercion is simple, as shown in �gure 3.

number class

float number-class

double-float number-class

integer number-class

single-precision-integer number-class

single-precision-integer

! double-float

Figure 3: Level-0 number class hierarchy and coercion chart

Any level-0 version of a library module, for example, elementary-function, need only de�ne methods for

these two classes.

2.8.2 Level-1 Numbers

In Figure 4 is an example of what the initial number class hierarchy for level-1 might look like. The

inheritance relationships implied by this diagram are part of this de�nition, but the same caveats listed

under the description of level-0 numbers also apply here. Level-1 extends level-0 by the addition of variable

precision integers (class variable-precision-integer), single precision oating point (class single-float)

and rational numbers (class ratio). The components of an instance of ratio are subclasses of integer.

However, unlike level-0, coercion at level-1 can lead to overow in converting an instance of variable--

precision-integer|and, hence, an instance of ratio|to single-float or double-float. An error is

signaled (condition: floating-point-conversion-overflow) if overow is detected. Although coercion is

de�ned as a path through a sequence of types, conversion operations should be done in one step.

28 2 STRUCTURE AND INTERPRETATION

number class

float number-class

single-float number-class

double-float number-class

integer number-class

single-precision-integer number-class

variable-precision-integer number-class

ratio number-class

single-precision-integer

! variable-precision-integer

! ratio

! single-float

! double-float

Figure 4: Level-1 number class hierarchy and coercion chart

2.9 External Representations

Objects in the following classes have de�ned print representations: character, number, pair, string,

symbol, and vector. These representations are produced by the function write and permit read to construct

a copy that is equal to the original object. Precise details of the syntax are given in appendix A. There are

also print representations, more amenable to the eye, that are not guaranteeed to allow read to construct

an equal copy of the object. These representations are produced by the function prin. Details of read

and character syntax classes in the standard tokenisation scheme are in appendix A. Here is an informal

description and some examples of the external representation of the classes listed some fundamental types:

character: A character is written out as #\?, where ? is the glyph associated with the character in question,

except for the special cases of alert, backspace, delete, formfeed, linefeed, newline, return, tab space

and vertical-tab, which are displayed respectively as #\alert, #\backspace, #\delete, #\formfeed,

#\linefeed, #\newline, #\return, #\tab, #\space, and #\vertical-tab. A character which does

not have a glyph for its external representation is written out as #\x followed by up to four hexadecimal

digits, the value representing the position of the character in the current character set.

number: A positive integer is written as a sequence of digits optionally preceded by a plus sign. A negative

integer is written as a sequence of digits preceded by a minus sign. For example, 1234567890, -456,

+1959. A rational number is written as two integers separated only by /, the �rst of which can be

preceded by a sign. For example, 123/456, -1/2, +3/4. A oating point number is written as: 123.456,

-5.678E13, +3.421E-9 (see appendix A.9), The number styles here are the default ones used by write

and prin, but more control is available via the function format, for example: control of �eld width,

scienti�c notation.

pair: A pair is written as (obj

1

. obj

2

), where obj

1

is the car and obj

2

is the cdr. There are two special

cases in the print representation of pair. If obj

2

is the empty list, then the pair is written as (obj

1

).

If obj

2

is an instance of pair, then the pair is written as (obj

1

obj

3

. obj

4

), where obj

3

is the car

of obj

2

and obj

4

is the cdr with the above rule for the empty list applying. By induction, a list of

length n is written as (obj

1

. . .obj

n�1

. obj

n

), with the above rule for the empty list applying. The

representations of obj

1

and obj

2

are determined by the external representations de�ned in this section.

string: A string is written as: "1234567890" except that write outputs a re-readable form of the escaped

characters. For example, "a\n\\b" (input notation) is the string containing the characters #\newline,

#\a, #\\ and #\b. The function write produces "a\n\\b", whilst prin produces

a

\b

as output. Characters which do not have a glyph associated with their position in the character set are

output as a hex insertion in which all four hex digits are speci�ed, even if there are leading zeros. The

29

function prin outputs the interpretation of the characters according to the rules given in section 2.3.4

and omits the string-begin and string-end characters.

symbol: A symbol is represented by its printname, which is a true string, written without enclosing double

quotes. If output by write, the representation of the symbol will permit reconstruction by read|

escape characters are preserved|so that equivalence is maintained between read and write for sym-

bols. For example: |a(b| and foo.bar are two symbols as output by write such that read can read

them as two symbols. If output by prin, the escapes necessary to re-read the symbol will not be

included. Thus, taking the same examples, prin outputs a(b and foo.bar, which read interprets as

the symbol a followed by the start of a list, the symbol b and the symbol foo.bar.

vector: A vector is written as #(obj

1

. . .obj

n

). The representations of obj

i

are determined by the external

representations de�ned in this section.

Some classes of objects have a distinguished external representation but cannot be reconstructed by read.

Here are some examples of such classes: function, class, table, thread, stream.

3 Basic Expressions

3.1 Level-0 Expressions

This section gives the informal syntax of well-formed expressions and describes the semantics of the special-

forms, functions and macros of the level-0 language. In the case of level-0 macros, the description is aug-

mented with an expansion which has the required semantics. However, these descriptions are not prescriptive

of any processor and a conforming program cannot rely on adherence to these expansions.

3.1.1 Primitive Expressions

constant level-0 syntax

There are two kinds of constant, literal constants and de�ned constants. The latter are considered under

symbols. A literal constant is a number, a string, a character, or the empty list. The result of processing

such a literal constant is the constant itself|that is, it denotes itself. The external representation of the

empty list is (). The empty list is the only instance of the class null. For historical reasons, the symbol

nil is de�ned to be immutably bound to the empty list.

symbol level-0 syntax

The current lexical binding of symbol is returned. A symbol can also name a de�ned constant|that is, an

immutable module binding. The de�ned constant t has the value t. The de�ned constant nil has the value

(), which represents the abstract boolean value false. The abstract boolean value true can represented by

any value other than false|that is, other than ().

3.1.2 Constant and Literal Expressions

(quote datum) ! datum level-0 special form

The result of processing the expression (quote datum) is datum. The object datum can be any external

representation of a EULISP object|see section 2.9 for an informal treatment of external representations

and appendix A for formal details. The special form quote can be abbreviated using apostrophe|graphic

representation ' in the standard tokenisation scheme|so that (quote a) can be written 'a. These two

notations are used to incorporate literal constants in programs. It is an error to modify the contents of a

literal expression.

30 3 BASIC EXPRESSIONS

3.1.3 Assignments

An assignment operation modi�es the contents of a binding named by a identi�er|that is, a variable.

(setq identi�er form) ! obj level-0 special form

The form is evaluated and the result is stored in either the closest lexical binding named by identi�er. The

value returned is the value of form. It is an error to modify an immutable binding.

(setter access-function) ! update-function level-0 function

A simple generalized place update facility is provided by setter. Given access-function, setter returns

the corresponding update function. If no such function is known to setter, an error is signaled (condition:

no-setter-function). Thus (setter car) returns the function to update the car of a pair. New update

functions can be added by using setter's update function, which is accessed by the expression (setter

setter). Thus ((setter setter) an-accessor an-updator) installs the function which is the value of

an-updator as the updator of the accessor function which is the value of an-accessor. De�ned updator

functions in this report have the same immutable status as other standard functions, such that attempting

to rede�ne such a function, for example ((setter setter) car a-new-value), signals an error (condition:

cannot-update-setter)

3.1.4 Conditional Expressions

(if antecedent consequence alternative) ! obj level-0 special form

The antecedent is evaluated. If the result is true the consequence is evaluated, otherwise the alternative

is evaluated. Both consequence and alternative must be speci�ed. The result of if is the result of the

evaluation of whichever of consequence or alternative is chosen. consequence is a single form, but alternative

is a sequence of forms. Each form in alternative is evaluated in order and the result of the last form is the

result of the if expression. Additional conditional forms (when, unless) are given in section 3.2.3.

(cond (antecedent form

�

)

�

) level-0 macro

The cond operator provides a convenient syntax for collections of if-then-elif...else expressions. The rewrite

rules for cond are:

(cond) � ()

(cond (antecedent) . . .) � (or antecedent . . .)

(cond (t form

�

)) � (progn form

�

)

(cond

(antecedent

1

)

(antecedent

2

form

�

)

. . .

� (or antecedent

1

(cond

(antecedent

2

form

�

)

. . .))

(cond

(antecedent

1

form

�

)

(antecedent

2

form

�

)

. . .)

� (if antecedent

1

(progn form

�

)

(cond

(antecedent

2

form

�

)

. . .)))

(and form

�

) level-0 macro

The expansion of an and form leads to the evaluation of the sequence of forms from left to right. The the

�rst form in the sequence that evaluates to () stops evaluation and none of the forms to its right will be

evaluated. The result of and is (). If none of the forms evaluate to (), the value of the last form is returned.

The rewrite rules for and are:

(and) � t

(and form) � form

(and form

1

form

2

. . .) � (if form

1

(and form

2

. . .) ())

3.1 Level-0 Expressions 31

(or form

�

) level-0 macro

The expansion of an or form leads to the evaluation of the sequence of forms from left to right. The value

of the �rst form that evaluates to true is the result of the or form and none of the forms to its right will be

evaluated. If none of the forms evaluate to true, the value of the last form is returned. The rewrite rules for

or are:

(or) � ()

(or form) � form

(or form

1

form

2

. . .) � (let ((x form

1

)) (if x x (or form

2

. . .)))

where x does not occur free in any of form

2

. . . form

n

.

3.1.5 Variable Binding and Sequences

(lambda lambda-list body) ! function level-0 special form

The function construction operator is lambda. Access to the lexical environment of de�nition is guaranteed,

which may cause the creation of a closure. The syntax of lambda-list is de�ned by the following grammar:

lambda-list ::= identi�er j simple-list j rest-list

simple-list ::= (identi�er

�

)

rest-list ::= (identi�er

+

. identi�er)

If lambda-list is an identi�er, it is bound to a newly allocated list of the actual parameters. This binding

has lexical scope and inde�nite extent. If lambda-list is a simple-list, the arguments are bound to the

corresponding identi�ers. Otherwise, lambda-list must be a rest-list. In this case, each identi�er preceding

the dot is bound to the corresponding argument and the identi�er succeeding the dot is bound to a newly

allocated list whose elements are the remaining arguments. These bindings have lexical scope and extent. It

is an error if the same identi�er appears more than once in a lambda-list.

(let/cc identi�er body) ! obj level-0 special form

The identi�er is bound to a new location, which is initialized with the continuation of the let/cc form. This

binding is immutable and has lexical scope and inde�nite extent. Each form in body is evaluated in order in

the environment extended by the above binding. The result of evaluating the last form in body is returned

as the result of the let/cc form. It is an error to call the continuation outside the dynamic extent of the

let/cc form that created it. The continuation is a function of one argument.

(let (binding

�

) body) level-0 macro

A binding is speci�ed by either an identi�er or a two element list of an identi�er and an initializing form. All

the initializing forms are evaluated in order from left to right in the current environment and the variables

named by the identi�ers in the bindings are bound to new locations holding the results. Each form in body

is evaluated in order in the environment extended by the above bindings. The result of evaluating the last

form in body is returned as the result of the let form. The rewrite rule for let is:

(let () form

�

) � (progn form

�

)

(let ((id

1

form

1

)

(id

2

form

2

)

id

3

. . .)

form

�

)

� ((lambda (id

1

id

2

id

3

. . .)

form

�

)

form

1

form

2

() . . .)

(progn form

�

) ! obj level-0 special form

The sequence of forms is evaluated in order, returning the value of the last one as the result of the progn

expression.

32 3 BASIC EXPRESSIONS

3.1.6 Function Calls and Application

A function call is written (operator operand

�

). Details of the processing of expressions are given in x5.1. An

error is signaled (condition: invalid-operator) if the operator is neither a special form nor a function.

(apply function obj

1

... obj

n

) ! obj level-0 function

Calls function with actual parameter list created by appending obj

n

to a list of the arguments obj

1

through

obj

n�1

. An error is signaled (condition: processing-condition) if obj

n

is not a proper list.

3.1.7 Method Combination

The following operators are used to a�ect the order of method application. It is an error to use either of

these functions outside a method body. Argument bindings inside methods are immutable. Therefore an

argument inside a method retains its specialized class throughout the processing of the method.

(call-next-method) ! obj level-0 special form

The next most speci�c applicable method is called with the same arguments as the current method. An

error is signaled (condition: no-next-method) if there is no next most speci�c method.

(next-method-p) ! boolean level-0 special form

If there is a next most speci�c method, next-method-p returns a non-(), otherwise, it returns ().

3.1.8 Condition Handling

Conditions are handled with a function called a handler. Handlers are established dynamically and have

dynamic scope and extent. Thus, when a condition is signaled, the processor will call the dynamically closest

handler. Note that it is the �rst handler accepting to process the condition that is used and not necessarily

the most speci�c. Handlers are established by the special form with-handler.

(signal condition continuation) ! null level-0 function

The function signal calls the dynamically closest handler with condition|the condition being signaled|

and either continuation or (). If the second argument is a subclass of continuation, that is the resume

continuation to be used in the case of a handler deciding to resume from a continuable condition. If the

second argument is (), it indicates that the condition was signaled as a non-continuable condition|in this

way the handler is informed of the signaler's intention.

(with-handler handler-function protected-form

�

) ! obj level-0 special form

The with-handler sets up handler-function so that it can be executed in the event of a signal occurring

during the evaluation of the sequence of protected-forms. A handler function takes two arguments|the

condition, and a resume continuation. The condition is the condition object that was passed to signal as its

�rst argument. The resume continuation is the continuation (or ()) that was given to signal as its second

argument. A with-handler expression is evaluated in three steps:

1. The new handler-function is constructed and identi�es the dynamically closest handler.

2. The dynamically closest handler is shadowed by the establishment of the new handler-function.

3. The sequence of protected-forms is evaluated in order and the value of the last one is returned as the

result of the with-handler expression.

4. the handler-function is disestablished, and the previous handler is no longer shadowed.

The above is the normal behaviour of with-handler. The exceptional behaviour of with-handler happens

when there is a call to signal during the evaluation of protected-form. signal calls the dynamically closest

handler-function passing on the two arguments given to signal. The handler-function is executed in the

dynamic extent of the call to signal. However, any signals occurring during the execution of handler-

function are dealt with by the dynamically closest handler outside the extent of the form which established

handler-function. A handler-function takes one of three actions:

3.1 Level-0 Expressions 33

1. Return. This causes the next-closest enclosing handler-function to be called, passing on the condition

and the resume continuation. This is termed declining the condition. The situation when there is no

next closest enclosing handler is discussed later.

2. Call the resume continuation. This action might be taken if the condition is recognised by the handler

function and might be preceded by some corrective action. This is termed resuming the condition.

3. Not return and not call the resume continuation. This action might be taken if the condition is

recognised by the handler function and might be preceded by some corrective action before some kind

of transfer of control. This is termed accepting the condition.

It is an error if the condition is declined and there is no next closest enclosing handler. In this circumstance

the identi�ed error is delivered to the con�guration to be dealt with in an implementation-de�ned way.

(conditionp obj) ! boolean level-0 predicate

Returns obj if the class of obj is a subclass of condition, otherwise ().

(make-condition condition-class init-option

�

) ! condition level-0 constructor

The result of make-condition is an instance of a condition class containing speci�c information about

the particular condition that has arisen. The speci�c information depends on the condition class and its

speci�cation depends what was de�ned for the init-options when the class was de�ned. The resulting

condition object can be passed to signal, which will then pass it to the dynamically closest handler-function.

The init-options are speci�ed under the initialize-instance method for the class condition.

(condition-message condition) ! string level-0 function

Returns the contents of the message slot of condition, which is a string.

(initialize-instance condition init-option

�

) ! condition level-0 initialize-instance method

First calls call-next-method to carry out initialization speci�ed by superclasses then does the condition

speci�c initialization. The following init-option is recognised for this method:

message: The value must be a string, which should be used to convey information about the condition that

has arisen.

(cerror error-message condition init-option

�

) ! null level-0 function

(error error-message condition init-option

�

) ! null level-0 function

The cerror and error functions signal continuable and non-continuable errors, respectively. Each calls

signal with an instance of a condition of class condition initialized from init-options, the error-message and

a resume continuation. In the case of cerror the resume continuation is the continuation of the cerror

expression. In the case of error, it is (), signifying that the condition was not signaled continuably.

(unwind-protect protected-form after-form

�

) ! obj level-0 special form

The normal action of unwind-protect is to process protected-form and then each of after-forms in order,

returning the value of protected-form as the result of unwind-protect. A non-local exit from the dynamic

extent of protected-form, which can be caused by processing a non-local exit form, will cause each of after-

forms to be processed before control goes to the continuation speci�ed in the non-local exit form. The

after-forms are not protected in any way by the current unwind-protect. Should any kind of non-local

exit occur during the processing of the after-forms, the after-forms being processed are not reentered. In-

stead, control is transferred to wherever speci�ed by the new non-local exit but the after-forms of any

intervening unwind-protects between the dynamic extent of the target of control transfer and the current

unwind-protect are evaluated in increasing order of dynamic extent.

34 3 BASIC EXPRESSIONS

3.1.9 De�ned Conditions

execution-condition(condition) level-0 condition

This is the root condition class for all conditions that are related to errors detected during, and as a

consequence of, the execution of a program.

wrong-class-object(execution-condition) level-0 condition

no-setter-function(execution-condition) level-0 condition

cannot-update-setter(execution-condition) level-0 condition

invalid-operator(execution-condition) level-0 condition

unquote-no-context(execution-condition) level-0 condition

improper-unquote-splice(execution-condition) level-0 condition

The above specialized condition classes are de�ned to identify speci�c execution conditions.

telos-condition(condition) level-0 condition

This is the root condition class for all conditions that are related to the object system.

slot-unbound(telos-condition) level-0 condition

slot-missing(telos-condition) level-0 condition

non-allocatable-object(telos-condition) level-0 condition

no-applicable-method(telos-condition) level-0 condition

non-congruent-lambda-lists(telos-condition) level-0 condition

incompatible-method-signature(telos-condition) level-0 condition

no-next-method(telos-condition) level-0 condition

method-in-use(telos-condition) level-0 condition

The above specialized condition classes are de�ned to identify speci�c object system conditions.

thread-condition(execution-condition) level-0 condition

This is the root condition class for all conditions related to threads.

arithmetic-condition(execution-condition) level-0 condition

This is the root condition class for all conditions related to arithmetic.

division-by-zero(arithmetic-condition) level-0 condition

zero-argument-in-ulp(arithmetic-condition) level-0 condition

conversion-condition(execution-condition) level-0 condition

This is the root condition class for all conditions related to convert.

floating-point-conversion-overflow(conversion-condition) level-0 condition

integer-conversion-overflow(conversion-condition) level-0 condition

cannot-convert-to-character(conversion-condition) level-0 condition

improper-list-conversion(conversion-condition) level-0 condition

stream-condition(execution-condition) level-0 condition

This is the root condition class for all conditions related to streams.

incompatible-streams(stream-condition) level-0 condition

cannot-open-path(stream-condition) level-0 condition

file-already-exists(stream-condition) level-0 condition

inconsistent-open-options(stream-condition) level-0 condition

invalid-stream-position(stream-condition) level-0 condition

invalid-output-base(stream-condition) level-0 condition

not-an-input-stream(stream-condition) level-0 condition

not-an-output-stream(stream-condition) level-0 condition

not-an-io-stream(stream-condition) level-0 condition

not-a-character-stream(stream-condition) level-0 condition

3.1 Level-0 Expressions 35

not-a-binary-stream(stream-condition) level-0 condition

not-a-positionable-stream(stream-condition) level-0 condition

path-does-not-exist(stream-condition) level-0 condition

stream-not-open(stream-condition) level-0 condition

The above specialized condition classes are de�ned to identify speci�c stream conditions.

environment-condition(execution-condition) level-0 condition

This is the root condition class for all conditions related to the environment.

3.1.10 Quasiquotation Expressions

(quasiquote skeleton) level-0 macro

Quasiquotation is also known as \backquoting". A quasiquoted expression is a convenient way of building

a structure. The skeleton describes the shape and, generally, many of the entries in the structure but some

holes remain to be �lled. The quasiquote macro might be abbreviated by using the glyph called grave

accent (`), so that (quasiquote expression) can be written `expression.

(unquote form) level-0 syntax

(unquote-splicing form) level-0 syntax

The holes in a quasiquoted expression are identi�ed by \unquote" expressions and these come in two forms|

expressions whose value is to be inserted at that location in the structure and expressions whose value is to

be spliced into the structure at that location. The former is indicated by an unquote form and the latter

by an unquote-splicing form. An \unquote-splice" expression must result in a proper list. An error is

signaled (condition: improper-unquote-splice) on attempting to unquote-splice an improper list. The

insertion of the result of an \unquote-splice" expression is as if the opening and closing parentheses of the

list are removed and all the elements of the list are appended in place of the \unquote-splice" expression.

An error is signaled (condition: unquote-no-context) if either of these syntaxes occurs outside the scope

of a quasiquote form.

The macros unquote and unquote-splicing can be abbreviated respectively by using the glyph called

comma (,) preceding an expression and by using the diphthong comma followed by the glyph called com-

mercial at (,@) preceding an expression. Thus, (unquote a) may be written ,a and (unquote-splicing

a) can be written ,@a.

3.1.11 Module De�nition

(defmodule module-name import-spec syntax-spec module-expression

�

) level-0 syntax

The defmodule form de�nes a module named by module-name and stores a module object in the module

binding environment under the name module-name.

import-spec ::= (module-directive

�

)

syntax-spec ::= () j

(syntax import-spec defmacro

�

)

export-spec ::= export j export-syntax j expose

export ::= (export name

�

)

export-syntax ::= (export-syntax name

�

)

expose ::= (expose module-directive

�

)

module-directive ::= module-name j module-�lter

module-�lter ::= except j only j rename

except ::= (except (name

�

) module-directive

+

)

only ::= (only (name

�

) module-directive

+

)

rename ::= (rename ((old-name new-name)

�

) module-directive

+

)

module-expression ::= export-spec j level-0-expression j de�nition j (progn expression)

de�nition ::= level-0-de�nition

fdefmoduleg

36 3 BASIC EXPRESSIONS

A sequence of module-names and or module-directives is treated as the union of all the names generated by

each element of the sequence. It is an error is any name occurs more than once. Elements of an import-spec

are interpreted as follows:

except: Filters the names frommodule-name or module-directive discarding (module-name name) and keep-

ing all other names. The except directive is convenient when needing almost all of the names in a

module by naming just the few names that are not wanted from a module.

module-name: Extracts all the exported names from module-name.

only: Filters the names from module-name or module-directive keeping only those names speci�ed. If

(module-name name) occurs in the exported names it is kept. The only directive is convenient when

only a few names are needed from a module.

rename: Renaming is a substitution �lter that takes the names from module-name or module-directive

and replaces (module-name old-name) with (module-name new-name). All other names are passed

unchanged.

The sequence of export-specs in the module body is treated as the union of all the names generated by each

export-spec. It is an error if any name occurs more than once. An export-spec is interpreted as follows:

export: Each of the names appearing in the export form is added to the set of exports of the module.

export-syntax: Each of the names appearing in the export form is added to the set of exports of the

module with the syntax attribute set.

expose: Processes the module-directives appearing in the expose form following the rules for import-spec

and adds the resulting set of names to the exports of the module.

3.1.12 De�nitions

(defcondition condition-name superclass init-option

�

) level-0 de�ning form

This de�ning form de�nes a new condition class. The �rst argument is the name to which the new condition

class will be bound. The second is the superclass of the new condition and an init-option is a identi�er

followed by its (default) initial value. If superclass is (), the superclass is taken to be condition. Otherwise

superclass must be condition or one of its subclasses.

(defconstant identi�er form) level-0 de�ning form

The value of form is stored as the module value of name. It is an error to set the value of a de�ned constant

to a di�erent value.

(defgeneric gf-name gen-lambda-list init-option

�

) level-0 de�ning form

This de�ning form de�nes a new generic function. The resulting generic function will be bound to gf-name.

The second argument is the formal parameter list. An error is signaled (condition: non-congruent-lambda--

lists) if any method de�ned on this generic function does not have a lambda list congruent to that of the

generic function. In addition, an error is signaled (condition: incompatible-method-signature) if the

method's specialized lambda list widens the domain of the generic function. In other words, the lambda

lists of all methods must specialize on subclasses of the classes in the lambda list of the generic function.

This applies both to methods de�ned at the same time as the generic function and to any methods added

subsequently by defmethod or add-method. An init-option is a identi�er followed by a corresponding value.

The syntax of defgeneric is as follows:

3.1 Level-0 Expressions 37

gf-name ::= identi�er

gen-lambda-list ::= spec-lambda-list

init-option ::= method (method-description)

method-description ::= (spec-lambda-list form

�

)

spec-lambda-list ::= (spec-variable

�

[. variable])

spec-variable ::= (variable class) j variable

class ::= class-name

The only init-option at level-0 is:

method: This option is followed by a method description. A method description is a list comprising the

specialized lambda list of the method, which denotes the signature, and a sequence of forms, denoting

the method body. The method body is closed in the lexical environment in which the generic function

de�nition appears.

(deflocal name form) level-0 de�ning form

The value of form is stored as the module binding value of name. The binding created by a deflocal form

is mutable.

(defmacro macro-name lambda-list body) level-0 de�ning form

The defmacro form de�nes a function named by macro-name and stores the de�nition as the module binding

value of macro-name. In addition, the function macro-name is exported with the syntax attribute set. The

interpretation of the lambda-list is as de�ned for lambda (see section 3.1.5). The binding created by defmacro

is immutable.

(defstruct class-name superclass (slot-description

�

) class-option

�

) level-0 de�ning form

defstruct creates a new structure class. The �rst argument is the name to which the new class will be

bound. The second is identi�er which names a variable to which the superclass is bound. If superclass is (),

the superclass is taken to be the root structure class structure. The list of slot-descriptions is described

below. Finally, a class-option is a identi�er followed by a corresponding value, which, taken together, apply

to the class as a whole.

class-name ::= identi�er

superclass ::= fstructure-class or the name of one of its subclassesg

slot-description ::= slot-name j (slot-name slot-option

�

)

slot-name ::= identi�er

slot-option ::= initarg identi�er j

initform form j

reader reader-name j

writer writer-name j

accessor reader-name

reader-name ::= identi�er

writer-name ::= identi�er

class-option ::= constructor constructor-spec j

predicate predicate-name

constructor-spec ::= (constructor-name init-option

�

)

constructor-name ::= identi�er

predicate-name ::= identi�er

The slot-options are interpreted as follows:

initarg: The value of this option is a identi�er naming a symbol, which is the name of an argument to be

supplied in the init-options of a call to make-instance on the new class. The value of this argument

38 3 BASIC EXPRESSIONS

in the call to make-instance is the initial value of the slot. This option must only be speci�ed once for

a particular slot. The same initarg name may be used for several slots, in which case they will share

the same initial value if the initarg is given to make-instance.

initform: The value of this option is a form, which is evaluated as the default value of the slot, to be used if

no initarg is de�ned for the slot or given to a call to make-instance. The form is evaluated in the lexical

environment of the call to defstruct and the dynamic environment of the call to make-instance. The

form is evaluated each time make-instance is called and the default value is called for. The order of

evaluation of the initforms in all the slots is determined by initialize-instance. This option must

only be speci�ed once for a particular slot.

reader: The value is the identi�er of the variable to which the reader function will be bound. The reader

function is a means to access the slot. The reader function is a function of one argument, which should

be an instance of the new class. No writer function is automatically created with this option. This

option can be speci�ed more than once for a slot, creating several readers. It is an error to specify the

same reader, writer, or accessor name for two di�erent slots.

writer: The value is the identi�er of the variable to which the writer function will be bound. The writer

function is a means to change the slot value. The creation of the writer is analogous to that of the

reader function. This option can be speci�ed more than once for a slot. It is an error to specify the

same reader, writer, or accessor name for two di�erent slots.

accessor: The value is the identi�er of the variable to which the reader function will be bound. In addition,

the use of this slot-option causes the creation of a writer function, which is anonymous, but associated

to the reader via the setter mechanism. This option can be speci�ed more than once for a slot. It is

an error to specify the same reader, writer, or accessor name for two di�erent slots.

The class options are interpreted as follows:

constructor: Creates a constructor function for the new class. The constructor speci�cation gives the

name to which the constructor function will be bound, followed by a sequence of legal initargs for the

class. The new function creates an instance of the class and �lls in the slots according to the match

between the speci�ed initargs and the given arguments to the constructor function. This option may

be speci�ed any number of times for a class. Specifying the constructor in this way is equivalent to

writing a defconstructor form for the class.

predicate: Creates a predicate function for the new class. The predicate speci�cation gives the name to

which the predicate function will be bound. This option may be speci�ed any number of times for

a class. Specifying the constructor in this way is equivalent to writing a defpredicate form for the

class.

(defun function-name lambda-list body) ! symbol level-0 de�ning form

(defun (setter function-name) lambda-list body) ! symbol level-0 de�ning form

The defun form de�nes a function named by function-name and stores the de�nition as the module value

of function-name. The interpretation of the lambda-list is as de�ned for lambda (see section 3.1.5). The

binding created by defun is immutable.

3.2 Level-1 Expressions

This section gives the informal syntax of well-formed expressions and describes the semantics of the special-

forms and primitive functions of the level-1 language. In the case of level-1 macros, the description is

augmented with an expansion which has the required semantics. However, these descriptions are not pre-

scriptive of any processor and a conforming program cannot rely on adherence to these expansions.

3.2 Level-1 Expressions 39

3.2.1 Dynamic Binding

(dynamic identi�er) ! obj level-1 special form

The closest dynamic binding of symbol named by identi�er is returned. If no such binding exists, an error

is signaled (condition: unbound-dynamic-variable).

(dynamic-setq identi�er form) ! obj level-1 special form

The form is evaluated and the result is stored in the closest dynamic binding of symbol named by identi�er.

An error is signaled (condition: unbound-dynamic-variable) if symbol is not dynamically apparent and has

no dynamic global value.

(dynamic-let (binding

�

) body) ! obj level-1 special form

The binding is speci�ed by either an identi�er or a two element list of an identi�er and an initializing form.

All the initializing forms are evaluated from left to right in the current environment and the new bindings

for the symbols named by the identi�ers are created in the dynamic environment to hold the results. These

bindings have dynamic scope and dynamic extent. Each form in body is evaluated in order in the environment

extended by the above bindings. The result of evaluating the last form in body is returned as the result of

dynamic-let.

3.2.2 Lexical Binding Extensions

(labels ((function-name lambda-list body)

�

) labels-body) level-1 macro

The labels operator provides for local mutually recursive function creation. Each function-name is bound

to a new location holding an unspeci�ed value, making a new environment extended by those bindings.

Then for each set of formal parameters and body, a function is constructed, using lambda, and the binding

of the corresponding function-name is updated to have the value of the lambda expression. The scope of the

function-names is the entire labels form. The lambda-list is either a single variable or a list of variables|see

lambda. Each form in labels-body is evaluated in order in the above extended environment. The result of

evaluating the last form is returned as the result of the labels form. The rewrite rule for labels is:

(labels ((var

1

lambda-list

1

body

1

)

(var

2

lambda-list

2

body

2

)

. . .)

form

�

)

� (let ((var

1

())

(var

2

())

. . .

(setq var

1

(lambda lambda-list

1

body

1

))

(setq var

2

(lambda lambda-list

2

body

2

))

. . .

form

�

)

(let* (binding

�

) body) level-1 macro

A binding is speci�ed by a two element list of a variable and an initializing form. The �rst initializing form is

evaluated in the current environment and the corresponding variable is bound to a new location containing

that result. Subsequent bindings are processed in turn, evaluating the initializing form in the environment

extended by the previous binding. Each form in body is evaluated in order in the environment extended by

the above bindings. The result of evaluating the last form is returned as the result of the let* form. The

rewrite rules for let* are:

(let* () form

�

) � (progn form

�

)

(let* ((var

1

form

1

)

(var

2

form

2

)

var

3

. . .)

form

�

)

� (let ((var

1

form

1

))

(let* ((var

2

form

2

)

var

3

. . .)

form

�

))

40 3 BASIC EXPRESSIONS

(generic-lambda lambda-list init-option

�

) level-1 macro

generic-lambda creates and returns an anonymous generic function that can be applied immediately,

much like the normal lambda. The �rst argument is a lambda list, while the init-options are inter-

preted exactly as for the level-1 de�nition of defgeneric. Note that an error is be signaled (condition:

no-applicable-method) if an attempt is made to apply a generic function which has no applicable methods

for the classes of the arguments supplied.

(generic-labels (lambda-list init-option

�

) form

�

) level-1 macro

This form is analogous to the normal labels. The �rst argument is a binding list, of the same form as that

speci�ed for the level-1 de�nition of defgeneric. The lexical environment of each de�ned generic function

includes the others, just like labels.

3.2.3 Conditional Extensions

(when antecedent form

�

) level-1 macro

The when operator evaluates antecedent and if the result is not (), the forms are evaluated from left to right.

It is equivalent to if with a null alternative. If the evaluation of antecedent is not (), the result of the when

form is that of the evaluation of the last form, otherwise the result is (). The rewrite rule for when is:

(when) � Is an error

(when antecedent) � ()

(when form

1

form

2

. . .) � (if form

1

(progn form

2

. . .) ())

(unless antecedent form

�

) level-1 macro

The unless operator evaluates the �rst form and if the result is (), the remaining forms are evaluated from

left to right. It is equivalent to if with a null consequence. If the evaluation of the �rst form is (), the result

of the unless form is the result of the evaluation of the last form, otherwise the result is (). The rewrite

rule for unless is:

(unless) � Is an error

(unless antecedent) � ()

(unless form

1

form

2

. . .) � (if form

1

() (progn form

2

. . .))

3.2.4 Exit Extensions

(block identi�er form

�

) level-1 macro

(return-from identi�er [form]) level-1 macro

The block expression is used to establish a statically scoped binding of an escape function. The block variable

is bound to the continuation of the block. The continuation can be invoked anywhere within the block by

using return-from. The forms are evaluated in sequence and the value(s) of the last one is returned as the

value(s) of the block form.

In return-from, the variable names the continuation of the (lexical) block from which to return. An

error is signaled (condition: invalid-return-continuation) if the value of the variable named by identi�er

is not a continuation. return-from is the invocation of the continuation of the block named by variable.

The form is evaluated the value(s) are returned as the value(s) of the block named by variable. The rewrite

rules for block and for return-from are as follows:

(block) � Is an error

(block identi�er) � ()

(block identi�er form

�

) � (let/cc identi�er form

�

)

(return-from) � Is an error

(return-from identi�er) � (identi�er ())

(return-from identi�er form) � (identi�er form)

3.2 Level-1 Expressions 41

Exiting from a block, by whatever means, causes the restoration of the lexical environment and dynamic

environment that existed before block entry. The above rewrite for block, does not prevent the block being

exited from anywhere in its dynamic extent, since the block-exit function is a �rst-class item and can be

passed as an argument like other values.

(catch tag form

�

) level-1 macro

(throw tag form) level-1 macro

The catch operator is similar to block, except that the scope of the name (tag) of the exit function is

dynamic. The catch tag must be a symbol because it is used as a dynamic variable to create a dynamically

scoped binding of tag to the continuation of the catch form. The continuation can be invoked anywhere

within the dynamic extent of the catch form by using throw. The forms are evaluated in sequence and the

value of the last one is returned as the value of the catch form.

In throw, the tag names the continuation of the catch from which to return. One of two conditions

might arise in throw depending on whether the dynamic value of tag is unde�ned (condition: unbound--

dynamic-variable) or its value is not a continuation (condition: invalid-throw-continuation). throw is

the invocation of the continuation of the catch named tag. The form is evaluated and the value are returned

as the value of the catch named by variable. The tag ia a symbol because it used to access the current

dynamic binding of the symbol, which is where the continuation is bound.

The rewrite rules for catch and throw are:

(catch) � Is an error

(catch tag) � (progn tag ())

(catch tag form

�

) � (let/cc tmp (dynamic-let ((tag tmp)) form

�

))

(throw) � Is an error

(throw tag) � ((dynamic tag) ())

(throw tag form) � ((dynamic tag) form)

Exiting from a catch, by whatever means, causes the restoration of the lexical environment and dynamic

environment that existed before the catch was entered. The above rewrite for catch, causes the variable

tmp to be shadowed. This is an artifact of the above presentation only and a conforming processor must not

shadow any variables that could occur in the body of catch in this way.

3.2.5 De�ned Conditions

unbound-dynamic-variable(execution-condition) level-1 condition

invalid-return-continuation(execution-condition) level-1 condition

invalid-throw-continuation(execution-condition) level-1 condition

not-a-symbol(execution-condition) level-1 condition

symbol-multiply-defined(execution-condition) level-1 condition

The above specialized condition classes are de�ned to identify execution conditions de�ned at level-1.

bad-method-class(telos-condition) level-1 condition

orphan-method-call(telos-condition) level-1 condition

The above specialized condition classes are de�ned to identify speci�c object system conditions at level-1.

3.2.6 De�nitions

At level-1 defgeneric is extended to allow the use of user-de�ned generic function classes and method

classes. This is done by extending the init-options component of the speci�cation.

(defclass class-name (superclass

�

) (slot-description

�

) class-option

�

) level-1 de�ning form

This de�ning form de�nes a new class. The resulting class will be bound to class-name. The second argument

is a list of superclasses. If this list is empty, the superclass will be object. The third argument is a list of

42 3 BASIC EXPRESSIONS

slot-descriptions, the format of which is an extension of that for defstruct. The remaining arguments are

class options. The syntax of defclass is as follows:

class-name ::= identi�er

superclass ::= fclass or the name of one of its subclassesg

slot-description ::= slot-name j (slot-name slot-option

�

)

slot-name ::= identi�er

slot-option ::= initarg identi�er j

initform form j

reader reader-name j

writer writer-name j

accessor reader-name j

slot-class slot-description-class j

identi�er value

class-option ::= constructor constructor-spec

predicate predicate-name

metaclass class-name j

identi�er value

The slot-options and class-options are interpreted as follows:

initarg: As de�ned at level-0. See section 3.1.12.

initform: As de�ned at level-0. See section 3.1.12.

reader: As de�ned at level-0. See section 3.1.12.

writer: As de�ned at level-0. See section 3.1.12.

accessor: As de�ned at level-0. See section 3.1.12.

slot-class: The corresponding value is an instance of a subclass of slot-description-class. An imple-

mentation conforming at level-1 provides the slot description classes local-slot-description, for

slots particular to instances and shared-slot-description, for slots whose values are shared by all

the instances of the class. New slot description classes can be de�ned and used here. This option

can only be speci�ed once for a particular slot. Within a class di�erent slots can have di�erent slot

description classes.

identi�er expression: The symbol named by identi�er and the value of expression are passed in the call to

make-instance of the slot description class along with other slot options. The values are evaluated

in the lexical and dynamic environment of the defclass. For the language de�ned slot description

classes, no slot initargs are de�ned which are not speci�ed by particular defclass slot options.

constructor: As de�ned at level-0. See section 3.1.12.

predicate: As de�ned at level-0. See section 3.1.12.

metaclass: The value of this option is the class of the new class. By default, this is class. This option

must onlybe speci�ed once for the new class.

identi�er expression: The symbol named by identi�er and the value of expression are passed in the call to

make-instance on the class of the new class. This list is appended to the end of the list that defclass

constructs. The values are evaluated in the lexical and dynamic environment of the defclass. This

option is used for metaclasses which need extra information not provided by the standard options.

3.3 Level-2 Expressions 43

(defgeneric gf-name lambda-list init-option

�

) level-1 de�ning form

This de�ning form de�nes a new generic function. The resulting generic function will be bound to gf-name.

The second argument is the formal parameter list. An error is signaled (condition: non-congruent-lambda--

lists) if any of the methods de�ned on this generic function do not have lambda lists congruent to that of

the generic function. This applies both to methods de�ned at the same time as the generic function and to

any methods added subsequently by defmethod or add-method. An init-option is a identi�er followed by its

initial value. The syntax of defgeneric is an extension of the level-0 syntax as follows:

level-1-init-option ::= level-0-init-option j

class gf-class-name j

method-class method-class-name j

method (method-description)

gf-class-name ::= class-name

method-class-name ::= class-name

class-name ::= fclass or the name of one of its subclassesg

The init-options are interpreted as follows:

class: The class of the new generic function. This must be a subclass of generic-function. The default is

generic-function.

method-class: The class of all methods to be de�ned on this generic function. All methods of a generic

function must be instances of this class or of one of its subclasses. The method class must be a subclass

of method and is, by default, method.

method: As de�ned at level-0. See section 3.1.12.

(defvar identi�er form) level-1 de�ning form

The value of form is stored as the top dynamic value of the symbol named by identi�er. The binding created

by defvar is mutable. An error is signaled (condition: symbol-multiply-defined), on evaluating this form

more than once for the same identi�er.

3.3 Level-2 Expressions

NOTE|Nothing has been de�ned for level-2 at the time of writing.

4 Classes and Objects

4.1 Level-0 Classes

4.1.1 Accessing Objects

(class-of obj) ! obj level-0 function

class-of is a total function capable of taking any entity in the system and returning an object representing

its class. The composition of this function with itself is a function that returns the metaclass of an object.

(initialize-instance object init-option

�

) ! object level-0 initialize-instance method

The default method for initialize-instance looks at the legal initargs for the given class, and the set of

given initargs. For those initargs were given in the init-options, the appropriate slots are set to the speci�ed

value. For any slots not given values during this phase, the initform, if any, for the slot is called and the

resulting value placed in the slot. Any other slots remain unchanged. The initialized object is returned.

(slot-value obj

1

obj

2

) ! obj level-0 function

slot-value returns the object associated with the slot named obj

2

in obj

1

. If no slot with the given name

44 4 CLASSES AND OBJECTS

is de�ned in the object's class, an error is signaled (condition: slot-missing). If the slot is unbound, an

error is signaled (condition: slot-unbound).

((setter slot-value) obj

1

obj

2

obj

3

) ! obj level-0 function

This is the corresponding updator for slot-value. The new value is returned. If no slot with the given

name is de�ned in the object's class, an error is signaled (condition: slot-missing).

(slot-exists-p obj symbol) ! boolean level-0 generic

This generic function determines if a slot of the given name exists in the given object. By default, it matches

the name against the list of slot descriptors in the object's class.

(slot-bound-p obj symbol) ! boolean level-0 generic

This generic function determines if a slot of the given name is bound in the object. If the slot does not exist

in the object, an error is signalled (condition: slot-missing).

(unbind-slot obj symbol) ! obj level-0 generic

This generic function makes the slot of the speci�ed name in the object be unbound. If the slot does not

exist in the object, an error is signaled (condition: slot-missing).

4.1.2 Comparing Objects

Four functions for comparing objects are de�ned in EULISP of which = is speci�cally for comparing numeric

values and eq, eql and equal are for all objects. The latter three are related in the following way:

(eq a b)) (eql a b)) (equal a b)

(eq a b) 6((eql a b) 6((equal a b)

(eq obj

1

obj

2

) ! boolean level-0 function

Compares obj

1

and obj

2

and returns t if they are the same object, otherwise (). In the case of numbers

and characters the behaviour of eq might di�er between processors because of implementation choices about

internal representations. Therefore, eq might return t or () for numbers which are = and similarly for

characters which are equal, depending on the implementation.

(= number

1

number

2

) ! boolean level-0 generic

De�ned over all number types. If both numbers are of the same class, they are compared according to the

comparison function for numbers of that class. If the two instances are numerically equal, the result is the

�rst argument (a non-() value). If not, the result is (). Methods are de�ned for the following classes:

single-precision-integer, variable-precision-integer, ratio, float and complex. In the case of

complex, the result is determined by the conjunction of the pairwise application of = to the real parts and

the imaginary parts.

If the numbers are not of the same class, then one of the numbers is converted to the class of the other

number according to the protocol given in section 2.8.1 or in section 2.8.2.

(eql obj

1

obj

2

) ! boolean level-0 function

If the class of obj

1

and of obj

2

is the same and is a subclass of number, the result is that of comparing them

under =. If the class of obj

1

and of obj

2

is the same and is a subclass of character, the result is that of

comparing them under equal. Otherwise the result is that of comparing them under eq.

(equal obj

1

obj

2

) ! boolean level-0 generic

The result is determined by whichever of the methods de�ned in Table 1 is applicable. It is implementation-

de�ned whether or not equal will terminate on self-referential structures.

4.1 Level-0 Classes 45

Argument Class Description

character Each instance of character is converted to a number and these values are compared

using =. The result of equal is the �rst argument if the result of = is non-(). If

not, the result is ().

number If the class of each instance of number is the same subclass of number, the result of

equal is the result of =. If the instances are not of the same subclass of number,

the result is ().

string If the length of each instance of string is the same (under =), then the result is the

conjunction of the pairwise application of equal to the elements of the arguments.

If not the result is ().

vector If the maximum index of each instance of vector is the same (under =), then the

result is the conjunction of the pairwise application of equal to the elements of the

arguments. If not the result is ().

pair The result is the conjunction of the pairwise application of equal to the car �elds

and the cdr �elds of the arguments.

object If the class of each instance of object is the same, then the result is the conjunction

of the pairwise application of equal to the contents of the slots of the arguments.

If not the result is ().

Table 1: Methods for equal

4.1.3 Copying Objects

(copy obj) ! obj level-0 generic

Constructs of a copy of the source which is the same (under some class speci�c predicate) as the source. The

exact behaviour for each class of obj is de�ned below. Additional, specialized, copy functions are de�ned in

the subsections of section 4. The methods de�ned on copy are given in Table 2.

4.1.4 Conversion

Conversion between classes is provided by the function convert which accesses a set of converter functions

using the target class (the second argument to convert) as a key. The resulting converter function is a

generic function which discriminates on the class of the object which is to be converted. Table 3 details

the classes for which converter functions are de�ned and the methods which are de�ned on those converter

functions.

(convert obj class) ! obj level-0 function

Returns an instance of class which is equivalent in some class-speci�c sense to obj, which may be an instance

of any type. Calls the converter function associated with the class class.

(converter target-class) ! generic-function level-0 function

((setter converter) target-class generic-function) ! generic-function level-0 function

The accessor returns the converter function for the class target-class. The converter is a generic-function with

methods specialized on the class of the object to be converted. The setter function replaces the converter

function for the class target-class by generic-function. The new converter function must be an instance

of generic-function. Note that all converters de�ned here whose target class is string produce a string

containing a representation of the source object as if it had output by write.

4.1.5 Classes

(make-instance class init-option

�

) ! obj level-0 function

There are two phases in the creation of a new instance: allocating the physical memory, and initializing

46 4 CLASSES AND OBJECTS

Source Class Description

single-

precision-

integer

Constructs and returns an instance of single-precision-integer, whose value is the

same (under =) as the source.

variable-

precision-

integer

Constructs and returns an instance of variable-precision-integer, whose value is

the same (under =) as the source.

float Constructs and returns an instance of float, whose value is the same (under =) as the

source.

ratio Constructs and returns an instance of ratio, whose value is the same (under =) as the

source.

complex Constructs and returns an instance of complex, whose value is the same (under =) as

the source.

character Constructs and returns an instance of character, whose value is the same (under

equal) as the source.

pair Constructs and returns an instance of pair whose elements are the same as those of

the source (under eql), so that the resulting pair is the same (under equal) as the

source.

string Constructs and returns an instance of string, whose characters are the same as the

source and such that the resulting string is the same (under equal) as the source.

vector Constructs and returns an instance of vector, whose elements are the same as those

of the source (under eql), so that the resulting vector is the same (under equal) as

the source.

object Constructs and returns an instance of the same class as the source, whose slot values

are the same as those of the source (under eql), so that the resulting object is the

same (under equal) as the source.

Table 2: Methods de�ned on copy

the object. These phases are under control of the new object's metaclass and class respectively. De�ning

new classes and metaclasses often means de�ning new methods on the appropriate generic functions so that

metainstances are allocated correctly and instances initialized correctly.

The �rst argument to this generic function is a class. The remaining arguments are init-options to be

passed to allocate-instance and initialize-instance|see below. By default, make-instance returns a

newly allocated and initialized instance of the class by calling the generic functions allocate-instancewith

the given class (thus specializing on the metaclass) and the initialization list, and then initialize-instance

on the newly allocated instance and the initialization list. The function returns the newly allocated and

initialized instance.

A new class is created by applying make-instance to the desired metaclass. At level-0, make-instance is

legal on two metaclasses, structure-class and condition-class and several primitive classes: generic--

function, method and their subclasses, subclasses of condition and instances of structure-class. There-

fore, level-0 admits a limited class de�nition facility called defstruct, that cannot produce classes from

arbitrary metaclasses. The class of classes de�ned with defstruct is structure-class.

(subclassp class

1

class

2

) ! boolean level-0 function

Determines if its �rst argument is a subclass of its second argument, and, if so, returns its �rst argument,

otherwise ().

(allocate-instance class init-option

�

) ! obj level-0 generic

The �rst argument is a class, the remaining arguments are symbols and values to be passed to make-instance.

allocate-instance returns a new instance of the class with each component unbound. Since the argument

4.1 Level-0 Classes 47

Target Class Source Class Description

character integer Returns an instance of character whose position in the default

character set corresponds to that speci�ed by the instance of

integer. An error is signaled (condition: cannot-convert-to--

character) if the speci�ed position does not exist.

integer character Returns an instance of single-precision-integer which corre-

sponds to the position of the instance of character in the default

character set.

string single-

precision-

integer

Constructs and returns a string, the characters of which cor-

respond to the external representation of the instance of

single-precision-integer in decimal.

variable-

precision-

integer

Constructs and returns a string, the characters of which cor-

respond to the external representation of the instance of

variable-precision-integer in decimal.

single-float Constructs and returns a string, the characters of which correspond

to the external representation of the instance of single-float.

double-float Constructs and returns a string, the characters of which correspond

to the external representation of the instance of double-float.

ratio Constructs and returns a string, the characters of which correspond

to the external representation of the instance of ratio.

complex Constructs and returns a string, the characters of which correspond

to the external representation of the instance of cartesian-pair.

pair Constructs and returns a string, the characters of which correspond

to the characters comprising the �rst elements of the top-level pairs

of the instance of pair. It is an error if the source is not a proper

list. An error is signaled (condition: improper-list-conversion)

unless all of those elements are instances of the class character.

pair string Constructs and returns a proper list of characters, the elements of

which correspond to the characters in the external representation

of the instance of string as would be generated by write.

vector Constructs and returns a proper list, the elements of which corre-

spond to the elements stored in the instance of vector.

vector pair Constructs and returns a vector the elements of which correspond

to �rst elements of the top-level pairs in the instance of pair. It is

an error if the source is not a proper list.

Table 3: Converter functions and Methods de�ned on them

is a class, the methods to this generic function specialize on the class of that class, which is the metaclass

of the instance. Thus, the metaclass is responsible for the physical allocation of its metainstances. If the

argument is a non-allocatable object, an error is signaled (condition: non-allocatable-object).

(initialize-instance obj init-list)! obj level-0 generic

The �rst argument is a newly allocated but uninitialized object; the second is a list of alternating symbols

and values of information to be used to initialize the slots of the instance. The object itself is returned.

Since the �rst argument is an instance, the generic function specialize on the class of that instance. Thus,

the class is responsible for the initialization of its instances.

(initialize-instance class init-list)! class level-0 initialize-instance method

The method for initialize-instance for the root class class initializes a new class. The following initargs

are accepted for this method:

48 4 CLASSES AND OBJECTS

name: The value must be a symbol. This initarg is only used for documentary purposes.

direct-superclasses: The value must be a list of one element, which is a class. This speci�es the direct

superclasses of the new class.

direct-slot-descriptions: The value must be a list of textual slot descriptions. Each textual slot description

is a list of alternating keywords and values. The accepted keywords in a textual slot description are:

name: The name of the new slot, by which it will be known to find-slot and to slot-value.

initfunction: A function of no arguments which will yield a default value for the new slot when

applied.

initarg: A symbol specifying the initargs which can be used with make-instance to initialize the value

of the slot by the user.

The method also takes into account any initargs speci�ed by the class of the new class, so the method may

be inherited by new metaclasses if they do not do any unusual processing of the init-list.

(make-reader class slot) ! function level-0 generic

This generic function is used to create the reader functions for slots which request them. It is responsible

for creating a function of one argument, an instance of the class, which returns the value of the slot. The

function returned can be a generic function, a non-generic function, depending on the class of class. For

instances of class, a generic function is created. For instances of structure-class a normal function is

created. It is not necessary that the accessor function call slot-value or any of the functions in the slot

access protocol if the information can be obtained in another way.

(make-writer class slot) ! function level-0 generic

This generic function is used to create the writer functions for slots which request them. It is responsible

for creating a function of two arguments, the �rst being an instance of the class and the second a new value

for the slot, which stores the new value in the slot. The function returned may be a generic function, a non-

generic function, depending on the class of class. For instances of class, a generic function is created. For

instances of structure-class a normal function is created. It is not necessary that the returned function

call slot-value or any of the functions in the slot access protocol if the information can be obtained in

another way.

(make-constructor class initarg-list)! function level-0 generic

This generic function is used to create a constructor function for a class. The constructor function takes the

same number of arguments as the initarg-list. The constructor function must return a newly allocated and

initialized instance of class. Each element in the initarg-list, which must be a legal initarg for some slot of

the class, speci�es that the corresponding argument of the constructor function will be used to initialize the

slots which specify that element as an initarg.

(make-predicate class) ! function level-0 generic

This generic function is used to create a predicate function for a class. It returns a function which will return

() if its argument of any other class than class and its argument otherwise.

(defreader name class-name slot-name) level-0 macro

This macro creates a reader function bound to name, a symbol, which given an instance of the class class-

name, returns the value of the slot named slot-name.

(defwriter name class-name slot-name) level-0 macro

This macro creates a writer function bound to name, a symbol, which given an instance of the class class-

name, returns the value of the slot named slot-name.

(defaccessor name class-name slot-name) level-0 macro

This macro creates a accessor function bound to name, a symbol, which given an instance of the class

class-name, returns the value of the slot named slot-name.

4.1 Level-0 Classes 49

(defconstructor name class-name initarg-list) level-0 macro

This macro creates a constructor function for the class class-name bound to name. The initarg-list is a list

of initargs accepted by the class. The new function will have a lambda list congruent to this list; the new

instance will be set up as though make-instance were called with the speci�ed initargs and given values.

(defpredicate name class-name) level-0 macro

This macro creates a predicate function for the class class-name bound to name.

(class-precedence-list class) ! list level-0 generic

This generic function returns the class precedence list of the given class. The class precedence list is a

linearized list of all the class's superclasses, direct and remote, beginning with the class itself. This list is

used to determine the speci�city of slot and method inheritance. The rules for determining this list are

de�ned by the class of the class, and should be implemented for new metaclasses by writing a new method

for compute-class-precedence-list instead of this accessor.

(class-direct-superclasses class) ! list level-0 generic

This generic function returns a list of the direct superclasses of the given class. This list will be of length

one for instances of the primitive metaclasses and zero for the class object.

(class-direct-subclasses class) ! list level-0 generic

Given a class, this generic function returns a list of the direct subclasses of the class|that is, all the classes

which speci�ed the argument as a direct superclass.

(class-constructors class) ! list(function) level-0 generic

This function will return a list of functions taking an arbitrary number of arguments. Each of these functions

can be used to create a new instance of the class, and takes as arguments a function-speci�c set of initialization

values. These functions are speci�ed by the constructor defclass or defstruct options and created by

make-constructor.

maximum-slot-count:integer level-0 constant

This is a processor-de�ned constant. A conforming processor must support a maximum number of slots per

object of at least 32767.

4.1.6 Numbers

The naming conventions described in section 1.8 are applied in the following de�nitions.

(numberp obj) ! boolean level-0 predicate

If the class of obj is a subclass of number the result is obj, otherwise ().

(make-number string) ! number level-0 constructor

The characters comprising string are tokenised and if the resulting lexeme is classi�ed as a number, the

internal representation of that number is constructed and returned as the result of make-number.

(+ z

1

z

2

...) ! z level-0 function

Computes the sum of the arguments using the generic function binary-plus. Given zero arguments, +

returns 0 of class integer. One argument returns that argument. The arguments are combined left-

associatively.

(- z

1

[z

2

...]) ! z level-0 function

Computes the result of subtracting successive arguments|from the second to the last|from the �rst using

the generic function binary-difference. Zero arguments is an error. One argument returns that argument.

The arguments are combined left-associatively.

(* z

1

z

2

...) ! z level-0 function

Computes the product of the arguments using the generic function binary-times. Given zero arguments,

50 4 CLASSES AND OBJECTS

* returns 1 of class integer. One argument returns that argument. The arguments are combined left-

associatively.

(/ z

1

[z

2

...]) ! z level-0 function

Computes the result of dividing the �rst argument by its succeeding arguments using the generic function

binary-divide. Zero arguments is an error. One argument computes the reciprocal of the argument.

(< x

1

x

2

...) ! boolean level-0 function

Determines whether the sequence of numbers x

1

up to x

n

is strictly increasing according to the generic

function binary-lt.

(> x

1

x

2

...) ! boolean level-0 function

Determines whether the sequence of numbers x

1

up to x

n

is strictly decreasing, according to the generic

function binary-gt.

(<= x

1

x

2

...) ! boolean level-0 function

Determines whether the sequence of numbers x

1

up to x

n

is increasing, according to the generic function

binary-le.

(>= x

1

x

2

...) ! boolean level-0 function

Determines whether the sequence of numbers x

1

up to x

n

is decreasing, according to the generic function

binary-ge.

(max x

1

[x

2

...]) ! x level-0 function

Determines the maximal element of the numbers x

1

up to x

n

using the generic function binary-lt. Zero

arguments is an error. One argument returns x

1

.

(min x

1

[x

2

...]) ! x level-0 function

Determines the minimal element of the numbers x

1

up to x

n

using the generic function binary-lt. Zero

arguments is an error. One argument returns x

1

.

(gcd z

1

[z

2

...]) ! z level-0 generic

Computes the greatest commondivisor of z

1

up to z

n

using the generic function binary-gcd. Zero arguments

is an error. One argument returns z

1

.

(lcm q

1

[q

2

...]) ! q level-0 generic

Computes the least commonmultiple of q

1

up to q

n

using the generic function binary-lcm. Zero arguments

is an error. One argument returns q

1

.

(abs z) ! z level-0 generic

Compute the absolute value of z.

(zerop x) ! boolean level-0 generic

Compares z with the zero element of the class of z using the generic function =.

(sign x) ! x level-0 generic

Returns the result of converting �1 to the class of x with the sign of the x; 0 is considered positive.

(positivep x) ! boolean level-0 generic

Compares x against the zero element of the class of x using the generic function binary-gt.

(negativep x) ! boolean level-0 generic

Compares x against the zero element of the class of x using the generic function binary-lt.

(binary-plus z

1

z

2

) ! z level-0 generic

Compute the sum of z

1

and z

2

.

(binary-difference z

1

z

2

) ! z level-0 generic

Compute the di�erence of z

1

and z

2

.

4.1 Level-0 Classes 51

(negate z) ! z level-0 generic

Compute the additive inverse of x.

(binary-times z

1

z

2

) ! z level-0 generic

Compute the product of z

1

and z

2

.

(binary-divide z

1

z

2

) ! z level-0 generic

Compute the ratio of z

1

and z

2

. If the divisor is the zero element of the class an error is signaled (condition:

division-by-zero).

(binary-lt x

1

x

2

) ! boolean level-0 generic

Compare x

1

with x

2

returning t if x

1

precedes x

2

according to the ordering method of the class of higher

class of x

1

and x

2

.

(binary-gt x

1

x

2

) ! boolean level-0 generic

Compare r

1

with r

2

returning t if r

1

succeeds r

2

according to the ordering method of the class of higher

class of r

1

and r

2

.

(binary-max x

1

x

2

) ! x level-0 generic

Compare x

1

and x

2

and return whichever is the greater according to the ordering method of the class of the

higher class of x

1

and x

2

.

(binary-min x

1

x

2

) ! x level-0 generic

Compare x

1

and x

2

and return whichever is the greater according to the ordering method of the class of the

higher class of x

1

and x

2

.

(binary-gcd q

1

q

2

) ! q level-0 generic

Compute the greatest common divisor of q

1

and q

2

.

(binary-lcm q

1

q

2

) ! q level-0 generic

Compute the lowest common multiple of q

1

and q

2

.

4.1.7 Coercion

Target Class Source Class Description

single-

precision-

integer

double-float Returns an instance of single-precision-integer whose value

is closest to that of the oating point source. This is the same

function as round without specifying the second argument. An

error is signaled (condition: integer-conversion-overflow) if the

oating point number cannot be represented as a single precision

integer.

double-float single-

precision-

integer

Returns an instance of double-float whose value is the oating

point approximation to the single precision integer source.

Table 4: Converter methods for level-0 numbers

4.1.8 Single Precision Integer Arithmetic

(binary-plus i

1

i

2

) ! i level-0 binary-plus method

(binary-difference i

1

i

2

) ! i level-0 binary-difference method

(negate i) ! i level-0 negate method

(binary-times i

1

i

2

) ! i level-0 binary-times method

(binary-lt i

1

i

2

) ! i level-0 binary-lt method

(binary-gt i

1

i

2

) ! i level-0 binary-gt method

52 4 CLASSES AND OBJECTS

Target Class Source Class Description

single-

precision-

integer

double-float Returns an instance of single-precision-integerwhose value is

closest to that of the source. This is the same function as round

without specifying the second argument. An error is signaled (con-

dition: integer-conversion-overflow) if the oating point num-

ber cannot be represented as a single

single-float Returns an instance of single-precision-integerwhose value is

closest to that of the source. This is the same function as round

without specifying the second argument. An error is signaled (con-

dition: integer-conversion-overflow) if the oating point num-

ber cannot be represented as a single precision integer.

ratio Returns an instance of ratio whose numerator is the same (under

=) as the source and whose denominator is one.

single-float single-

precision-

integer

Returns an instance of double-float whose value is the oating

point approximation to the single precision integer source.

double-float Returns an instance of ratio whose numerator is the same (under

=) as the source and whose denominator is one.

integer Returns an instance of integer whose value is closest to that of

the source. If the source is small enough to be represented as an

instance of single-precision-integer, this operation is the same

as round without specifying the second argument. Otherwise this

operation has the same speci�cation as round (with one argument),

but returns a variable-precision-integer.

ratio Returns an instance of ratio whose value is the rational approx-

imtion to the single precision oating point source.

double-float integer Returns an instance of integer whose value is closest to that of

the source. If the source is small enough to be represented as an

instance of single-precision-integer, this operation is the same

as round without specifying the second argument. Otherwise this

operation has the same speci�cation as round (with one argument),

but returns a variable-precision-integer.

ratio Returns an instance of ratio whose value is the rational approx-

imtion to the double precision oating point source.

Table 5: Converter methods for level-1 numbers

(binary-max i

1

i

2

) ! i level-0 binary-max method

(binary-min i

1

i

2

) ! i level-0 binary-min method

(binary-gcd i

1

i

2

) ! i level-0 binary-gcd method

(binary-lcm i

1

i

2

) ! i level-0 binary-lcm method

(abs i) ! i level-0 abs method

(zerop i) ! i level-0 zerop method

(sign i) ! i level-0 sign method

(positivep i) ! i level-0 positivep method

(negativep i) ! i level-0 negativep method

Arithmetic operations for variable-precision-integer are de�ned by methods to be attached to the

generic functions mentioned above. The non class-speci�c de�nitions of these operations is given in sec-

tion 4.1.6.

((converter string) i) ! i level-0 method

4.1 Level-0 Classes 53

Constructs and returns a string, the characters of which correspond to the external representation of the

instance of single-precision-integer in decimal.

(generic-prin i stream) ! i level-0 generic-prin method

(generic-write i stream) ! i level-0 generic-write method

Output external representation of i on stream as described in section 2.9 and de�ned in appendix A.4.

most-positive-single-precision-integer:i level-0 constant

This is an implementation-de�ned constant. A conforming processor must support a value greater than or

equal to 32767 and the value of maximum-vector-index.

most-negative-single-precision-integer:i level-0 constant

This is an implementation-de�ned constant. A conforming processor must support a value less than -32768.

(single-precision-integer-p obj) ! boolean level-0 predicate

Returns obj if obj is an instance of single-precision-integer.

(oddp number) ! number level-0 generic

(oddp i) ! i level-0 oddp method

Returns t if the remainder from dividing i by two is non-zero, otherwise ().

(evenp number) ! number level-0 generic

(evenp i) ! i level-0 evenp method

Returns t if the remainder from dividing i by two is zero, otherwise ().

(quotient i

1

i

2

) ! i level-0 generic

(quotient i

1

i

2

) ! i level-0 quotient method

(remainder i

1

i

2

) ! i level-0 generic

(remainder i

1

i

2

) ! i level-0 remainder method

(modulo i

1

i

2

) ! i level-0 generic

(modulo i

1

i

2

) ! i level-0 modulo method

The de�nition of the behaviour of these three operations is so closely linked that they are treated together

here. The arguments are related by the equation: i

1

= i

2

�q+r, where r lies between integer zero (inclusive)

and the integer i

2

� sign(i

1

) (exclusive). Additionally, the modulus, m, is constrained by 0 � m < jqj. The

following three tables de�ne sign combination for quotient, remainder and modulus operations:

quotient remainder modulus

i

2

�i

2

i

2

�i

2

i

2

�i

2

i

1

q �q r �r r remainder(i

2

+remainder(i

1

,i

2

),

i

2

)

�i

1

�q q �r r remainder(i

2

+remainder(i

1

,i

2

),

i

2

)

r

4.1.9 Double Precision Floating Point Arithmetic

(binary-plus x

1

x

2

) ! x level-0 binary-plus method

(binary-difference x

1

x

2

) ! x level-0 binary-difference method

(negate x) ! x level-0 negate method

(binary-times x

1

x

2

) ! x level-0 binary-times method

(binary-divide x

1

x

2

) ! x level-0 binary-divide method

(binary-lt x

1

x

2

) ! x level-0 binary-lt method

(binary-gt x

1

x

2

) ! x level-0 binary-gt method

(binary-max x

1

x

2

) ! x level-0 binary-max method

(binary-min x

1

x

2

) ! x level-0 binary-min method

(abs x) ! x level-0 abs method

54 4 CLASSES AND OBJECTS

(zerop x) ! x level-0 zerop method

(sign x) ! x level-0 sign method

(positivep x) ! x level-0 positivep method

(negativep x) ! x level-0 negativep method

Arithmetic operations for double-float are de�ned by methods to be attached to the generic functions

metnioned above. The non class-speci�c de�nitions of these operations is given in section 4.1.6. The non

class-speci�c de�nitions of these operations is given in section 4.1.6. The other de�nitions in this section are

derived from ISO/IEC CD 10967: 1991 (Language compatible arithmetic).

((converter string) x) ! x level-0 method

Constructs and returns a string, the characters of which correspond to the external representation of the

instance of single-float.

(generic-prin x stream) ! x level-0 generic-prin method

(generic-write x stream) ! x level-0 generic-write method

Output external representation of x on stream as described in section 2.9 and de�ned in appendix A.4.

most-positive-double-float:x level-0 constant

least-positive-double-float:x level-0 constant

least-negative-double-float:x level-0 constant

most-negative-double-float:x level-0 constant

The value of most-positive-double-float is that positive double precision oating point number closest

in value to (but not equal to) positive in�nity that the processor provides.

The value of least-positive-double-float is that positive double precision oating point number

closest in value to (but not equal to) zero that the processor provides. This value is the same as the result

of (succ 0.0).

The value of least-negative-double-float is that negative double precision oating point number

closest in value to (but not equal to) zero that the processor provides. Even if the processor provide negative

zero, this value must not be negative zero. This value is the same as the result of (pred 0.0).

The value of most-negative-double-float is that negative double precision oating point number

closest in value to (but not equal to) negative in�nity that the processor provides.

(floatp obj) ! boolean level-0 function

(double-float-p obj) ! boolean level-0 function

The �rst function returns obj if obj is a subclass of float and the second returns obj if it is an instance of

double-float. Otherwise both return ().

(exponent x) ! integer level-0 generic

(exponent x) ! integer level-0 exponent method

Returns the exponent of the argument x as an integer having unbiased the value if necessary. The exponent

bias is an implementation-de�ned value.

(fraction x) ! oat level-0 generic

(fraction x) ! oat level-0 fraction method

Returns the result of scaling the argument x, such that the result is in the range �[1=r; 1), where r is the

radix of the oating point representation.

(scale x i) ! oat level-0 generic

(scale x i) ! oat level-0 scale method

Returns the result of scaling the argument x by the i

th

power of radix of the oating point representation.

(succ x) ! oat level-0 generic

(succ x) ! oat level-0 succ method

Returns the closest element of the class float which is greater than the argument x.

4.1 Level-0 Classes 55

(pred x) ! oat level-0 generic

(pred x) ! oat level-0 pred method

Returns the closest element of the class float which is less than the argument x.

(unit-last-place x) ! oat level-0 generic

(unit-last-place x) ! oat level-0 unit-last-place method

Returns the value of one unit in the last place, that is, its value is the weight of the least signi�cant digit of

a non-zero argument. If the argument is zero, an error is signaled (condition: zero-argument-in-ulp).

(truncate x [precision]) ! number level-0 generic

(truncate x [precision]) ! number level-0 truncate method

Given one argument, returns the greatest integer value whose magnitude is less than or equal to x. Given

two arguments with an integer value as the second to specify precision, returns a oating point number

which is the result of zeroing out the low (n� precision) digits, where n is the number of digits of precision

provided by the representation. It is an error if precision is greater than n.

(round x [precision]) ! number level-0 generic

(round x [precision]) ! number level-0 round method

Given one argument, returns the integer whose value is closest to x, except in the case when x is exactly

half-way between two integers, when it is rounded to the one that is even. Given two arguments with an

integer value as the second to specify precision, returns a oating point number which is the result of zeroing

out the low (n�precision) digits, where n is the number of digits of precision provided by the representation.

The number of digits of precision and the radix of the precision are implementation-de�ned values. If the

resulting value is exactly half-way between two precision-digit oating point numbers the result is the one

with the even least signi�cant digit. It is an error if precision is greater than n.

(intpart x) ! oat level-0 generic

(intpart x) ! oat level-0 intpart method

Returns the integer part of the argument x as a oating point number.

(fracpart x) ! oat level-0 generic

(fracpart x) ! oat level-0 fracpart method

Returns the value the argument x minus its integer part.

(floor x) ! i level-0 generic

(floor x) ! i level-0 floor method

Computes the greatest integer value which is less than or equal to x.

(ceiling x) ! i level-0 generic

(ceiling x) ! i level-0 ceiling method

Computes the least integer value that is greater than or equal to x.

4.1.10 Characters

(characterp obj) ! boolean level-0 predicate

Returns obj if obj is an instance of a subclass character, otherwise ().

((converter character) integer) ! integer level-0 method

Returns an instance of character whose position in the default character set corresponds to that speci�ed by

the instance of integer. An error is signaled (condition: cannot-convert-to-character) if the speci�ed

position does not exist.

((converter integer) character) ! character level-0 method

Returns an instance of single-precision-integer which corresponds to the position of the instance of

character in the default character set.

56 4 CLASSES AND OBJECTS

(generic-prin character stream) ! character level-0 generic-prin method

(generic-write character stream) ! character level-0 generic-write method

Output external representation of character on stream as described in section 2.9 and de�ned in appendix A.4.

4.1.11 Strings

(stringp obj) ! boolean level-0 predicate

Returns obj if obj is an instance of a subclass string, otherwise ().

(make-string n [character]) ! string level-0 constructor

Allocate and return a string of n characters initialised to character, if supplied, or to #\x0, by default.

(string-ref string n) ! character level-0 function

((setter string-ref) string n character) ! character level-0 function

Access and update elements of a string. It is an error if n is outside the range zero to the length of the

string.

(generic-prin string stream) ! string level-0 generic-prin method

(generic-write string stream) ! string level-0 generic-write method

Output external representation of string on stream as described in section 2.9 and de�ned in appendix A.4.

((converter pair) string)! string level-0 method

Constructs and returns a proper list of characters, the elements of which correspond to the characters in the

external representation of the instance of string as would be generated by write.

(length string) ! n level-0 length method

Returns the number of characters comprising string.

(string-lt string

1

string

2

[character-set])! boolean level-0 function

If the sequence of characters in string

1

is alphabetically less than that in string

2

returns t, else ().

(string-gt string

1

string

2

[character-set])! boolean level-0 function

If the sequence of characters in string

1

is alphabetically greater than that in string

2

returns t, else ().

(string-slice string start end) ! string level-0 function

Returns a newly allocated string containing the characters of string starting at start up to end.

(string-append string

1

string

2

) ! string level-0 function

Returns a newly allocated string containing the characters of string

1

followed by the characters of string

2

.

4.1.12 Pairs and Lists

The class pair (also known as a dotted pair) is a 2-tuple, whose �elds are called, for historical reasons, car

and cdr. Pairs are created by the function cons and the �elds are accessed by the functions car and cdr.

The major use of pairs is in the construction of (proper) lists. A (proper) list is de�ned as either the empty

list (denoted by '()) or a pair whose cdr is a proper list. An improper list is one containing a cdr which is

not a list.

It is an error to apply car or cdr or their setter functions to anything other than a pair. The empty

list|written ()|is not a pair. (car ()) and (cdr ()) is an error.

(consp obj) ! boolean level-0 predicate

Returns obj if obj is a subclass of pair, otherwise ().

(atom obj) ! boolean level-0 predicate

If obj is not an instance pair, obj is returned, otherwise ().

(cons obj

1

obj

2

) ! pair level-0 constructor

Allocates a new pair initialized to obj

1

and obj

2

.

4.1 Level-0 Classes 57

(car pair) ! obj level-0 function

(cdr pair) ! obj level-0 function

((setter car) pair obj) ! obj level-0 function

((setter cdr) pair obj) ! obj level-0 function

Functions to access and to update the �elds of objects which are instances of subclasses of pair.

(generic-prin pair stream) ! pair level-0 generic-prin method

(generic-write pair stream) ! pair level-0 generic-write method

Output the external representation of pair on stream as described in section 2.9 and de�ned in appendix A.4.

(list [obj

1

... obj

n

]) ! list(obj) level-0 function

Allocates a set of pairs each of which has been initialized with obj

i

in the car �eld and the pair whose car

�eld contains obj

i+1

in the cdr �eld. Returns the pair whose car �eld contains obj

1

.

(length list) ! integer level-0 length method

Returns the count of the number of top-level pairs in list.

4.1.13 Functions and Methods

The class function is the class of all ordinary functions. There are two subclasses of function: generic--

function and continuation. Methods are not functions. They are objects containing functions that form a

part of a generic function. Instances of functions are constructed by lambda, instances of continuations by

let/cc and instances of generic-functions by generic-lambda. The external representation of functions

and methods is processor de�ned.

(continuationp obj) ! boolean level-0 predicate

Returns obj if the class of obj is a subclass of continuation.

(functionp obj) ! boolean level-0 predicate

Returns obj if the class of obj is a subclass of function.

(generic-function-p obj) ! boolean level-0 predicate

Returns obj if the class of obj is a subclass of generic-function.

(methodp obj) ! boolean level-0 predicate

Returns obj if the class of obj is a subclass of method.

(function-lambda-list function) ! list level-0 generic

Returns a lambda-list congruent to that speci�ed when function was de�ned.

(generic-function-methods generic-function) ! list level-0 generic

Returns a list of the methods attached to generic function.

(generic-function-method-class generic-function) ! class level-0 generic

Returns the class of which all the methods of generic function are instances.

(initialize-instance generic-function init-list)! generic-function

level-0 initialize-instance method

The method for initializing instances of generic-function accepts the following initargs:

name: For documentary purposes, a name may be supplied at the creation of a generic function. If none is

supplied, none will be stored.

lambda-list: The lambda list must be supplied. The syntax is as speci�ed in section 3.1.12. An error is

signaled (condition: non-congruent-lambda-lists) if any method de�ned on this generic function

does not have a lambda lists isomorphic to that of the generic function. In addition, an error is signaled

(condition: incompatible-method-signature) if the method's specialized lambda list widens the

domain of the generic function. This applies both to methods de�ned at the same time as the generic

function and to any methods added subsequently by defmethod or add-method.

58 4 CLASSES AND OBJECTS

method-class: A subclass of the class method. All methods added to the generic function must be of this

class.

method: This option is followed by a method description. A method description is a list comprising the

specialized lambda list of the method, which denotes the signature, and a sequence of forms, denoting

the method body. The method body is closed in the lexical environment in which the generic function

de�nition appears.

Any initargs speci�ed for slots of new generic function classes will also be taken into account, so authors

of new generic function classes which do not do more elaborate processing at initialization time need not

write new methods for initialize-instance.

(initialize-instance method init-list)! method level-0 initialize-instance method

The method for initializing instances of method accepts the following initargs:

function: The value is a function which implements the method. This initarg is mandatory. The function

parameter list must be congruent to any generic function to which the method is attached.

signature: The value is a list of names of existing classes or class objects which specify the signature of

the new method | eg, the set of classes for which the new method is the most speci�c. This initarg is

mandatory.

Any initargs speci�ed for slots in subclasses of method will also be handled by the default method.

(defmethod gf-name spec-lambda-list form

�

) level-0 macro

(defmethod (converter class) form

�

) level-0 macro

This macro is used for de�ning new methods on generic functions. The syntactic elements of the form are all

de�ned under defgeneric in section 3.1.12. A new method object is de�ned with the speci�ed body and with

the signature given by the specialized lambda list. This method is added to the generic function bound to

gf-name or convertor function associated with class. In the former case, if the specialized-lambda-list is not

congruent with that of the generic function, an error is signaled (condition: non-congruent-lambda-lists).

In addition, an error is signaled (condition: incompatible-method-signature) if the method's specialized

lambda list widens the domain of the generic function.

(method-signaturemethod) ! list level-0 generic

Given a method, this returns the list of the most general classes for which the method is applicable.

(method-generic-function method) ! boolean level-0 generic

Given a method, this generic function returns the generic function of which the method is a part, or () if

the method does not belong to any generic function.

(method-function method) ! function level-0 generic

The function returned by the basic-method method of method-function has a lambda list congruent to that

of the given method and functionality equivalent to the use of call-method on the given method with the

same arguments.

4.1.14 Streams

Streams are created by the functions open and make-io-stream. In the following discussion, path is used to

refer to both �le names and to device names, although, on occasion, both �le and device are used explicitly.

(open init-option

�

) ! stream level-0 function

The open function causes a stream to be created linked to a path characterized by the speci�ed init-options.

In order that di�erent representations of pathnames can be supported, the open operation is implemented

by a generic function generic-open. Thus, open extracts the path init-option and call generic-open with

the value of that option and the init-options passed to open.

4.1 Level-0 Classes 59

path: The value of this option speci�es a pathname.

(generic-open path init-option

�

) ! stream level-0 generic

The generic function generic-open creates a stream linked to path, characterized by the speci�ed init-

options. The init-options are keywords (described below) and, where appropriate, initial values, in the same

style as the arguments to make-instance. Descriptions of the init-options follow here: the �rst level list

describes the direction options, and the second level the mode options for each direction.

input: This option does not take a value, but its presence causes the path to be opened for input. The three

direction options are mutually exclusive. If no direction option is given, this is the default.

output: This option does not take a value, but its presence causes the path to be opened for output. The

three direction options are mutually exclusive.

io: This option does not take a value, but its presence causes the path to be operned for both input and

output.

character: This option does not take a value, but its presence causes the path to be opened for character

input. The two mode options character and binary are mutually exclusive. If neither is given, this

is the default.

binary: This option does not take a value, but its presence causes the path to be opened for binary input

or output.

byte-size: The value of this option is an integer which speci�ed the size (in bits) of the binary items to be

input or output. This option is only used if binary is speci�ed too.

create: This option does not take a value, but its presence causes the path to be created if it does not exist.

If no output option is speci�ed, create is the default. If only create is speci�ed, an error is signaled

if the �le already exists (condition: file-already-exists).

append: This option does not take a value, but its presence causes any output to be appended to the path,

if it exists, or to create it if it does not. append, overwrite and new-version are mutually exclusive.

If append is speci�ed but create is not, an error is signaled if the �le does not exist (condition

path-does-not-exist).

overwrite: This option does not take a value but its presence causes the �le to be overwritten, if it exits.

If it is opened for output only, it will be truncated to zero length, but if it is opened for input and

output it will not be truncated. overwrite, append and new-version are mutually exclusive. If

overwrite is speci�ed but create is not, an error is signaled if the �le does not exist (condition

path-does-not-exist).

new-version: This option does not take a value, but its presence causes a new version of the path to be

created if it already exists, according to some implementation-de�ned means. If create is one of the

output options by default|but not by speci�cation|new-version is added to the option list, unless

new-version is not supported, in which case it is supplanted by overwrite. new-version, append and

overwrite are mutually exclusive. If new-version is speci�ed but create is not, an error is signaled

if the �le does not exist (condition path-does-not-exist).

If path cannot be opened, an error is signaled (condition: cannot-open-path). If a combination of options,

which contains mutually exclusive options, is given, an error is signaled (condition: inconsistent-open--

options). In most implementations, not all options will make sense for all paths.

(generic-open string init-option

�

) ! stream level-0 generic-open method

At level-0, the pathname is a string. The interpretation of string is implementation-de�ned. The init-options

60 4 CLASSES AND OBJECTS

is a list of directives concerning the opening of the stream and the kind of stream according to the options

speci�ed above.

(make-io-stream input-stream output-stream) ! io-stream level-0 function

input-stream must be open for input, output-stream must be open for output and their modes must be

compatible. The last requirement means that they must either both be character streams or both binary

streams with the same byte-size. Unless all of these conditions hold, an error is signaled (condition:

incompatible-streams). A new io-stream is created that reads from input-stream and writes to output-

stream.

(standard-input-stream) ! input-stream level-0 function

(standard-output-stream) ! output-stream level-0 function

(standard-error-stream) ! output-stream level-0 function

(trace-output-stream) ! output-stream level-0 function

(debug-io-stream) ! io-stream level-0 function

((setter standard-input-stream) input-stream) ! input-stream level-0 function

((setter standard-output-stream) output-stream) ! output-stream level-0 function

((setter standard-error-stream) output-stream) ! output-stream level-0 function

((setter trace-output) output-stream) ! output-stream level-0 function

((setter debug-io) io-stream) ! io-stream level-0 function

The above are the basic streams provided by the system. Each of the above accessors returns the cur-

rent value of the standard input stream, standard output stream, standard error stream, trace output

stream and the debug-io stream. The corresponding setter function is used to change the speci�ed stream

to stream. An error is signaled if stream is not of the correct class (condition: not-an-input-stream,

not-an-output-stream, not-an-io-stream, not-a-character-stream or not-a-binary-stream).

(streamp obj) ! boolean level-0 predicate

Returns obj if obj is an instance of a subclass of stream.

(open-stream-p obj) ! boolean level-0 predicate

(input-stream-p obj) ! boolean level-0 predicate

(output-stream-p obj) ! boolean level-0 predicate

These functions return t if obj is a stream which is open, open for input, or open for output, respectively.

(close stream) ! boolean level-0 generic

(close input-stream)! boolean level-0 close method

(close ouptut-stream)! boolean level-0 close method

(close io-stream)! boolean level-0 close method

The stream is closed, and any bu�ered output is ushed to the device connected to the stream. Any attempt

to read from or write to stream signals an error to be signaled (condition: stream-not-open). If stream was

open, stream is returned as the value of close. If stream was already closed, close returns ().

(flush stream) ! null level-0 generic

(flush ouptut-stream)! null level-0 flush method

(flush io-stream)! null level-0 flush method

Any bu�ered output to the stream is ushed to the device connected to the stream. flush returns (). If

stream is not open for output the condition not-an-output-stream is signaled.

(stream-ready-p stream) ! boolean level-0 generic

(stream-ready-p input-stream)! boolean level-0 stream-ready-p method

(stream-ready-p output-stream)! boolean level-0 stream-ready-p method

(stream-ready-p io-stream)! boolean level-0 stream-ready-p method

Returns t if stream has input available or is ready to receive ouptut.

4.1 Level-0 Classes 61

end-of-stream:eos-object level-0 constant

The value of end-of-stream is the only instance of the class eos-object, which is the distinguished entity

used to indicate that the stream is exhausted.

(generic-read-char stream) ! fcharacter j eos-objectg level-0 generic

(generic-read-byte stream) ! fn j eos-objectg level-0 generic

These read and return the next character or integer from stream. If the end of stream has been reached, the

end-of-stream object is returned. Either of these functions can signal the condition not-an-input-stream

and the �rst can signal not-a-character-stream and the second can signal not-a-binary-stream.

(generic-peek-char stream) ! fcharacter j eos-objectg level-0 generic

(generic-peek-byte stream) ! fn j eos-objectg level-0 generic

These return the next character or integer from stream, without removing it from stream. If the end of

stream has been reached, the end-of-stream object is returned. Either of these functions can signal the

condition not-an-input-stream and the �rst can signal not-a-character-stream and the second can

signal not-a-binary-stream.

(generic-write-char character stream) ! character level-0 generic

(generic-write-byte n stream) ! n level-0 generic

These write the character or integer to stream and return their �rst argument. Either of these functions

can signal the condition not-an-output-stream and the �rst can signal not-a-character-stream and the

second can signal not-a-binary-stream.

(stream-position stream) ! n level-0 generic

((setter stream-position) stream position) ! n level-0 generic

stream-position returns the current position of stream. The position is an integer which is zero at the

start of the stream, and increases monotonically as stream is read or written. It is not guaranteed that

reading or writing a single character will increase the position by one. The updator function accepts for

position any value returned by stream-position, and in some implementations any integer between zero

and the length of the stream is acceptable. The updator function also accepts the symbols start and end,

which respectively position the stream at its start and end. An error is signaled if the position is not valid

(condition: invalid-stream-position).

Support for stream positioning is optional, and it will not normally be available for all streams, for exam-

ple, terminals. If stream is not positionable, an error is signaled (condition: not-a-positionable-stream).

(stream-output-base stream) ! n level-0 generic

((setter stream-output-base) stream base) ! n level-0 generic

stream-output-base returns the base used when outputing objects which are a subclass of integer on

stream. The updator function sets the output base of stream to base, which must be an integral value in the

range [2 . . .36] or else an error is signaled (condition: invalid-output-base). In either case, if stream is

not an output-stream or an io-stream and error is signaled (condition: not-an-output-stream).

(generic-prin obj stream) ! obj level-0 generic

(generic-write obj stream) ! obj level-0 generic

Each of these functions returns obj as its result and has the side-e�ect of writing the external representation

of the item on stream. As discussed in section 2.9, (generic-)write produces a representation which

permits read to construct a copy which is equal to the original object, whilst (generic-)prin produces a

representation which might not. Methods are de�ned at level-0 for the following classes:

single-precision-integer, double-float, character, string, vector, pair, symbol.

At level-1, the following classes are added:

variable-precision-integer, single-float, ratio

62 4 CLASSES AND OBJECTS

The default write and prin methods outputs an implementation-de�ned representation of any object.

(read [stream])! fobj j eos-objectg level-0 function

Reads and returns the next available Lisp expression|see external representations in section 2.9.

(read-char [stream])! fcharacter j eos-objectg level-0 function

(read-byte [stream])! fn j eos-objectg level-0 function

(peek-char [stream])! fcharacter j eos-objectg level-0 function

(peek-byte [stream])! fn j eos-objectg level-0 function

(write-char character [stream]) ! character level-0 function

(write-byte n [stream])! n level-0 function

The above functions call their generic counterparts. The input functions use the value returned by

standard-input-stream and the output functions the value returned by standard-output-stream if stream

is not speci�ed.

(prin obj [stream])! obj level-0 function

(write obj [stream]) ! obj level-0 function

(newline [stream]) ! null level-0 function

(print obj [stream]) ! obj level-0 function

prin and write call their generic counterparts. newline is equivalent to calling the function generic--

prin-char with the arguments #\newline and stream. print is equivalent to newline, followed by prin.

(generic-prin stream

1

stream

2

) ! stream level-0 generic-prin method

(generic-write stream

1

stream

2

) ! stream level-0 generic-write method

Outputs stream

1

on stream

2

. The external representation of a stream is processor de�ned and, probably,

cannot be re-read using read.

(end-of-stream-p obj) ! boolean level-0 predicate

This predicate returns t if obj is the instance of eos-object, and otherwise (). The end-of-stream object is

returned by any of the read functions when applied to a stream which cannot provide any more input.

4.1.15 Symbols

The following operations are de�ned for the creation and manipulation of symbols.

(symbolp obj) ! boolean level-0 predicate

Returns obj if obj is an instance of a subclass of symbol.

(make-symbol string) ! symbol level-0 function

If a symbol with the name string does not already exist, a new symbol is allocated and its name is initialized

to string. This new symbol is returned. Otherwise the existing symbol is returned.

(gensym [string]) ! symbol level-0 function

Makes a new symbol with a name generated by a processor-de�ned mechanism. Optionally, a pre�x string

for this name may be speci�ed.

(symbol-name obj) ! string level-0 function

Returns a copy of the string which is equal to that given as the argument to the call to make-symbol which

created symbol.

(symbol-exists-p string)! boolean level-0 function

Returns the symbol whose name is string if that symbol has already been constructed by make-symbol.

Otherwise, returns ().

(generic-prin symbol stream) ! symbol level-0 generic-prin method

(generic-write symbol stream) ! symbol level-0 generic-write method

Outputs the external representation of symbol on stream as described in section 2.9 and de�ned in ap-

pendix A.4.

4.1 Level-0 Classes 63

4.1.16 Tables

Tables provide a general key to value association mechanism.

(tablep obj) ! boolean level-0 predicate

Returns obj is obj is an instance of table.

(make-table [comparator]) ! table(function) level-0 function

Allocates a new empty table and returns it.

(table-ref table key-obj [no-entry-value]) ! value-obj level-0 function

If key-obj is a key in table, matched by the comparator function, then the associated value is returned. If

there is no key key-obj in table, the value () is returned. However, if the optional parameter no-entry-value

is provided and key-obj does not occur in table, the value no-entry-value is returned.

((setter table-ref) table key-obj value-obj) ! obj level-0 function

If key-obj does not occur in table a new entry is made associating key-obj and value-obj. If key-obj does occur,

then the association is changed to value-obj. value-obj is returned.

(table-delete table key-obj) ! table level-0 function

If key-obj occurs in table, both the key and its associated value are deleted from the table. If key-obj does

not occur in table, no action is taken.

(generic-prin table stream) ! table level-0 generic-prin method

(generic-write table stream) ! table level-0 generic-write method

Output the external representation of table on stream. The external representation of instances of table is

implementation-de�ned.

(map-table function table) ! null level-0 function

The function function is applied to each key and its associated value stored in table.

(clear-table table) ! table level-0 function

All entries in table are deleted and the empty table is returned.

4.1.17 Threads and Semaphores

(make-thread initial-function) ! continuation level-0 constructor

Create a new thread and install initial-function as its initial function. The size of the thread can be

controlled by the optional second parameter which must be an integer. The initial state of the thread is

virgin.

(threadp obj) ! boolean level-0 predicate

Returns obj if obj is an instance of a subclass of thread.

(thread-status thread) ! fvirgin j running j suspended j deadg level-0 function

Returns a symbol indicating the status of thread.

(generic-prin thread stream) ! thread level-0 generic-prin method

(generic-write thread stream) ! thread level-0 generic-write method

Outputs the external representation of thread on stream. The external representation of thread is processor-

de�ned.

(thread-start continuation obj

�

) ! thread level-0 function

Processing within the thread, to which continuation belongs, can now proceed. The values obj

1

to obj

n

are

passed to thread. On the thread which called proceed, execution continues and the proceed expression

returns the value thread. The status of the thread containing continuation must be suspended.

(thread-suspend) ! null level-0 function

Suspends the processing of the current thread. The system will select one of the currently active threads

64 4 CLASSES AND OBJECTS

for processing. The now suspended thread can only continue processing after a continuation within it is

proceeded. After suspend, the status of the current thread is suspended.

(make-semaphore [i]) ! semaphore level-0 function

Create a instance of the class semaphore, initialized to zero by default or to i if given.

(generic-prin semaphore stream) ! semaphore level-0 generic-prin method

(generic-write semaphore stream) ! semaphore level-0 generic-write method

Output the external representation of semaphore on stream. The external representation of semaphore is

processor-de�ned.

(reinitialize-semaphore semaphore) ! semaphore level-0 function

Reset semaphore to zero. The modi�ed semaphore is returned.

(semaphore-up semaphore) ! semaphore level-0 function

Increment the state of semaphore. The modi�ed semaphore is returned. Any, some or all of the threads

blocked on the semaphore may be resumed. The mechanism for choosing which of the threads succeeds in

downing the semaphore is processor dependent.

(semaphore-down semaphore) ! semaphore level-0 function

Decrement the state of semaphore. The modi�ed semaphore is returned. If semaphore is in state zero, the

downing thread is suspended.

4.1.18 Vectors

(vectorp obj) ! boolean level-0 predicate

Returns obj if obj is an instance of vector.

(make-vector n [obj]) ! vector level-0 function

Returns a freshly allocated vector, whose maximum index is n-1 and each of whose elements have been

initialized to obj. Vectors are zero-based.

(length vector) ! n level-0 length method

Returns the length of vector, which is the maximum index plus one.

(vector-ref vector n) ! obj level-0 function

((setter vector-ref) vector n obj) ! obj level-0 function

The accessor returns and the updator changes the contents of the nth index of vector. The value stored in

index position n is obj, which is returned.

(make-initialized-vector obj

1

obj

2

... obj

n

) ! vector(obj) level-0 function

Allocated a vector of length n and store obj

1

in (vector-ref v 0), obj

2

in position (vector-ref v 1), up

to obj

n

in (vector-ref v n). Returns the initialized vector.

maximum-vector-index:integer level-0 constant

This is an implementation-de�ned constant. A conforming processor must support a maximum vector index

of at least 32767.

(generic-prin vector stream) ! vector level-0 generic-prin method

(generic-write vector stream) ! vector level-0 generic-write method

Output the external representation of vector on stream as described in section 2.9 and de�ned in appendix A.4.

4.2 Level-1 Classes

4.2.1 Character Sets

NOTE|No decisions have yet been made about how to handle international character sets.

4.2 Level-1 Classes 65

4.2.2 Classes

(initialize-instance class init-option

�

) ! class level-1 initialize-instance method

The method for initialize-instance for the root class class initializes a new class. At level-1 the following

additional init-options are accepted for this method:

direct-superclasses: The value must be a list of one element, which is a class. This speci�es the direct

superclasses of the new class.

direct-slot-descriptions: The value must be a list of textual slot descriptions. Each textual slot description

is a list of alternating keywords and values. The textual slot descriptions are combined with the

inherited slot descriptions to produce a �nal list of slot descriptions for the new class. See collect-slots

in section 4.2.2. At level-1 the following additional keyword is accepted in a textual slot description:

slot-class: The value must be a slot description class. Speci�es the class of the new slot description

object.

(find-slot-description class symbol) ! slot-description level-1 generic

Given a class and a slot name, this function will return the corresponding slot description object, if one

exists. If not, an error is signaled (condition: slot-missing).

(class-slot-descriptions class) ! list level-1 generic

This generic function returns a list of all slot description objects, inherited and direct, of the speci�ed class.

(class-direct-slot-descriptions class) ! list level-1 generic

This generic function returns a list of all slot description objects de�ned directly for the speci�ed class. It

does not return any inherited slots.

(slot-value-using-slot-description slot-description obj) ! obj level-1 generic

This generic function is responsible for reading a slot value given an object and the appropriate slot descrip-

tion object. The default method retrieves the slot's position and calls slot-value-using-class.

((setter slot-value-using-slot-description) slot-description obj

1

obj

2

) ! obj level-1 generic

This generic function is responsible for setting a slot value given an object, the appropriate slot description

object, and the new value. The default method retrieves the slot's position and calls the setter function of

slot-value-using-class.

(slot-value-using-class class obj n) ! obj level-1 generic

class is the class of obj. Methods on this function must know how to access obj to get the appropriate slot,

whose position is the third argument. This function is called by slot-value-using-slot-description.

((setter slot-value-using-class) class obj

1

n obj

2

) ! obj level-1 generic

class is the class of obj. Methods on this function must know how to access obj to set the appropriate slot,

whose position is the third argument. This function is called by the setter function of slot-value-using--

slot-description).

(compute-class-precedence-list class) ! list(class) level-1 generic

This generic function is called to compute an ordered list of superclasses of its �rst argument class, beginning

with class and ending with object. Each element of the resulting list must be a class, and no elements may be

repeated. De�ning new metaclasses which introduce new inheritance strategies (e.g. multiple inheritance)

may require writing new methods for this generic function. It is not speci�ed when or how many times this

generic function is called during the lifetime of a class.

(compute-class-precedence-list class) ! list(class)

level-1 compute-class-precedence-list method

Instances of the root class class are in single inheritance. All of its instances have a single direct superclass,

66 4 CLASSES AND OBJECTS

except object which has none. This method can be considered to return a cons of its �rst argument and the

result of a recursive application of itself to the �rst element of the argument's direct superclass list.

(add-superclasses class (class

�

)) ! class level-1 generic

The �rst argument is to be a subclass of each of the classes in the list. Methods on this generic function

must perform any necessary inheritance operations and bookkeeping. This generic function is called by the

initialize-instance methods for the built-in metaclasses. Its built-in methods use the protocol below.

(add-subclass class

1

class

2

) ! class level-1 generic

Adds class

2

as a subclass of class

1

. The built-in methods check metaclass compatibility and create the slot

description objects for the new class. Returns class

1

(metaclass-compatibility class

1

class

2

) ! obj level-1 generic

class

2

is a potential subclass of class

1

. This function must determine if the proposed inheritance is legal.

(collect-slots class list)! class level-1 generic

list is a list of property lists describing the directly de�ned slots of class. This generic function is respon-

sible for determining the complete list of slot description objects based on this list and the slots in the

superclasses of class. These new slot descriptions must be stored in the class. The built in methods call

make-slot-description on each element of the list.

(make-slot-description class list) ! slot-description level-1 generic

list is a property list of slot options. If defclass was used to de�ne class, this will include as keys

all slot options given to defclass and any given slot-initargs. In the built-in methods, if a slot

with same name as the name property of list is de�ned on a superclass of class, the generic function

make-inherited-slot-description is called with the class, old slot description, and the property list.

(make-inherited-slot-description class slot-description list) ! slot-description level-1 generic

This generic function is called when a slot is requested for a class which has a slot of the same name de�ned

by one of its superclasses. Generally, either uses the old slot description or creates a new slot description,

perhaps reusing some information in the inherited slot, perhaps using only information in the given property

list slot description description. For the kernel methods, it is an error to specify a slot for a class when a

slot of the same name but a di�erent slot description class exists in a superclass.

4.2.3 Functions and Methods

(add-method generic-function method) ! generic-function level-1 generic

This generic function adds a method object to the given generic function. If the specialized lambda

list of the method is not congruent with that of the generic function, an error is signaled (condition:

non-congruent-lambda-lists). If the method is not an instance of the generic function's method-class, an

error is signaled (condition: bad-method-class). If the method is already attached to some generic function

an error is signaled (condition: method-in-use). If a method with the same signature as method is already

attached to generic-function, the attached method is overwritten. The updated generic function is returned.

(remove-method generic-function method) ! generic-function level-1 generic

This generic function removes the given method from the generic function. If the method is not one of the

generic function's methods, nothing happens. The generic function is returned.

(find-method generic-function signature) ! boolean level-1 generic

If a method with signature exists in the generic-function, then that method is returned. Otherwise, the

result is ().

(compute-discriminating-function generic-function) ! function level-1 generic

Constructs and returns a function of one argument, which takes a list of method specializers|either classes

or some generic-function class-speci�c entity|with the same number of elements as the required argu-

ments for generic-function, and returns a sorted list of applicable methods for the given set of specializers.

4.2 Level-1 Classes 67

compute-discriminating-function is called at least once for an invocation of the generic function which is

its argument for a given set of argument classes. De�ning new generic function classes which use non-default

discriminating algorithms involves writing new methods for this generic function.

(compute-discriminating-function generic-function) ! function

level-1 compute-discriminating-function method

The default method implements the standard behavior for generic functions. The only supported specializers

are classes. The list of methods returned is sorted from most to least speci�c. The ordered list of applicable

methods for a set of classes can be considered to be determined by taking all the methods applicable for the

�rst argument class, sorting them, and then eliminating those methods not applicable for further argument

classes. The sort is two-keyed: �rst, by argument order, and second, for each argument class, according to

the class precedence list of that class.

(call-method method obj

�

) ! obj level-1 generic

Given a method and a set of arguments, apply the method to the arguments. It is an error to apply a method

to a set of arguments which does not match the method's signature. The applicable method list used in such

a call includes all applicable methods for the given arguments which are less speci�c than the called method.

If method is not attached to a generic function an error is signaled (condition: orphan-method-call).

4.2.4 Slot Descriptions

(initialize-instance slot-description init-option

�

) ! slot-description

level-1 initialize-instance method

This methods must call call-next-mthod before doing any other processing. The default method for slot

description classes accepts the following init-otions, as well as any speci�ed for slots of subclasses of the class

slot-description:

name: This mandatory initarg speci�es the name by which slots described by the new slot description may

be accessed using slot-value.

initfunction: The value of this mandatory initarg is a function of no arguments which when applied yields

a default value for slots described by the slot description.

initarg: The value of this optional initarg is a symbol specifying the legal initarg which can be used to

give an initial value for the slot in calls to make-instance of the class in which the slot description is

stored.

(slot-description-name slot-description) ! symbol level-1 generic

This function returns the name of the slot description.

(slot-description-position slot-description) ! n level-1 generic

This function returns the position of the slot in an object.

(slot-description-initfunction slot-description) ! function level-1 generic

This generic function returns a function of no arguments, which, when applied, yields the default value for

the slot. This function is closed in the lexical environment of the class de�nition form|normally defstruct

or defclass|and it is thus possible that this environment will be a�ected if the initform function is called.

This function is called at most once for each instantiation of a class holding the slot description.

(slot-value obj symbol) ! obj level-1 function

slot-value returns the object associated with the slot named symbol in obj. This request is divided into

several parts based on the responsibilities of the objects involved. From obj's class is found the appropriate

slot description object. Then slot-value-using-slot-description is called with the original object and

the slot description object. By default, this generic function �nds the logical position of the slot in the slot

68 4 CLASSES AND OBJECTS

description object and passes this information, the object's class, and the object itself to the generic function

slot-value-using-class, which is responsible for physically accessing this position in the object, since it

discriminates o� the object's metaclass.

If no slot with the given name is de�ned in the object's class, an error is signaled (condition: slot--

missing). If the slot is unbound, an error is signalled (condition: slot-unbound).

((setter slot-value) obj symbol value) ! obj level-1 function

This is the corresponding updator for slot-value. It stores value in the slot named symbol in the object obj.

It uses a similar protocol to access the appropriate place in the object to store the new value: it calls the setter

function of slot-value-using-slot-description and the setter function of slot-value-using-class. It

returns the new value. If no slot with the given name is de�ned in the object's class, an error is signalled

(condition: slot-missing).

4.2.5 Symbols

(symbol-value symbol) ! obj level-1 function

((setter symbol-value) symbol obj) ! obj level-1 function

If the �rst argument is not a subclass of symbol an error is signaled (condition: not-a-symbol), otherwise

the top dynamic value of symbol is returned. The setter function updates the top dynamic value of symbol

with the value of obj.

(symbol-dynamic-value symbol) ! obj level-1 function

((setter symbol-dynamic-value) symbol obj) ! obj level-1 function

If obj

1

is not a subclass of symbol an error is signaled (condition: not-a-symbol), otherwise the closest

dynamic value of symbol is returned. The setter function updates the closest dynamic value of symbol with

the value of obj.

(symbol-props symbol) ! list(obj) level-1 function

If the �rst argument is not a subclass of symbol an error is signaled (condition: not-a-symbol), otherwise

returns the property list of the symbol, which might be newly allocated, in which the alternate elements are

property-name and property-value, starting with a property-name.

(get symbol property-name [obj]) ! obj level-1 function

If the �rst argument is not a subclass of symbol an error is signaled (condition: not-a-symbol), otherwise

returns the property-value corresponding to property-name stored in the property list of symbol. If a property

does not have an entry on the property list of symbol, get returns (). An optional second argument to get

speci�es a value to be returned in case of failure in order to distinguish between the property value () and

the default failure value ().

((setter get) symbol property-name property-value) ! obj level-1 function

If the �rst argument is not a subclass of symbol an error is signaled (condition: not-a-symbol), otherwise the

setter function either updates the property-value corresponding to property-name, if property-name already

occurs in the property list of symbol, or adds the association of property-name and property-value to the

property list of symbol.

(remprop symbol property-name) ! obj level-1 function

If the �rst argument is not a subclass of symbol an error is signaled (condition: not-a-symbol). If property-

name occurs in the property list of symbol it is removed. The corresponding property-value is returned.

4.2.6 Single Precision Floating Point Arithmetic

(binary-plus x

1

x

2

) ! x level-1 binary-plus method

(binary-difference x

1

x

2

) ! x level-1 binary-difference method

(negate x) ! x level-1 negate method

4.2 Level-1 Classes 69

(binary-times x

1

x

2

) ! x level-1 binary-times method

(binary-divide x

1

x

2

) ! x level-1 binary-divide method

(binary-lt x

1

x

2

) ! x level-1 binary-lt method

(binary-gt x

1

x

2

) ! x level-1 binary-gt method

(binary-max x

1

x

2

) ! x level-1 binary-max method

(binary-min x

1

x

2

) ! x level-1 binary-min method

(abs x) ! x level-1 abs method

(zerop x) ! x level-1 zerop method

(sign x) ! x level-1 sign method

(positivep x) ! x level-1 positivep method

(negativep x) ! x level-1 negativep method

Arithmetic operations for single-float are de�ned by methods to be attached to the generic functions

mentioned above. The non class-speci�c de�nitions of these operations is given in section 4.1.6.

(exponent x) ! x level-1 exponent method

(fraction x) ! x level-1 fraction method

(scale x i) ! x level-1 scale method

(succ x) ! x level-1 succ method

(pred x) ! x level-1 pred method

(unit-last-place x) ! x level-1 unit-last-place method

(truncate x [precision]) ! x level-1 truncate method

(round x [precision]) ! x level-1 round method

(intpart x) ! x level-1 intpart method

(fracpart x) ! x level-1 fracpart method

(floor x) ! x level-1 floor method

(ceiling x) ! x level-1 ceiling method

Additional arithmetic operations on single precision oating point are de�ned by methods to be attached to

the generic functions mentioned above. The de�nitions of these operations is the same as in section 4.1.9.

((converter string) x) ! x level-1 method

Constructs and returns a string, the characters of which correspond to the external representation of the

instance of double-float.

(generic-prin x stream) ! x level-1 generic-prin method

(generic-write x stream) ! x level-1 generic-write method

Output external representation of x on stream as described in section 2.9 and de�ned in appendix A.4.

most-positive-single-float:x level-1 constant

least-positive-single-float:x level-1 constant

least-negative-single-float:x level-1 constant

most-negative-single-float:x level-1 constant

The value of most-positive-single-float is that positive single precision oating point number closest

in value to (but not equal to) positive in�nity that the processor provides.

The value of least-positive-single-float is that positive single precision oating point number

closest in value to (but not equal to) zero that the processor provides. This value is the same as the result

of (succ 0.0).

The value of least-negative-single-float is that negative single precision oating point number

closest in value to (but not equal to) zero that the processor provides. Even if the processor provide negative

zero, this value must not be negative zero. This value is the same as the result of (pred 0.0).

The value of most-negative-single-float is that negative single precision oating point number closest

in value to (but not equal to) negative in�nity that the processor provides.

(single-float-p obj) ! boolean level-1 function

Returns obj if obj is an instance of single-float, otherwise ().

70 5 ENVIRONMENT

4.2.7 Variable Precision Integer Arithmetic

(binary-plus i

1

i

2

) ! i level-1 binary-plus method

(binary-difference i

1

i

2

) ! i level-1 binary-difference method

(negate i) ! i level-1 negate method

(binary-times i

1

i

2

) ! i level-1 binary-times method

(binary-lt i

1

i

2

) ! i level-1 binary-lt method

(binary-gt i

1

i

2

) ! i level-1 binary-gt method

(binary-max i

1

i

2

) ! i level-1 binary-max method

(binary-min i

1

i

2

) ! i level-1 binary-min method

(binary-gcd i

1

i

2

) ! i level-1 binary-gcd method

(binary-lcm i

1

i

2

) ! i level-1 binary-lcm method

(abs i) ! i level-1 abs method

(zerop i) ! i level-1 zerop method

(sign i) ! i level-1 sign method

(positivep i) ! i level-1 positivep method

(negativep i) ! i level-1 negativep method

Arithmetic operations for variable-precision-integer are de�ned by methods to be attached to the

generic functions mentioned above. The non class-speci�c de�nitions of these operations is given in sec-

tion 4.1.6.

((converter string) i) ! i level-1 method

Constructs and returns a string, the characters of which correspond to the external representation of the

instance of variable-precision-integer in decimal.

(generic-prin i stream) ! i level-1 generic-prin method

(generic-write i stream) ! i level-1 generic-write method

Output external representation of i on stream as described in section 2.9 and de�ned in appendix A.4.

(variable-precision-integer-p obj) ! boolean level-1 function

Returns obj if obj is an instance of a subclass of variable-precision-integer.

(oddp i) ! i level-1 oddp method

Returns t if the remainder from dividing i by two is non-zero, otherwise ().

(evenp i) ! i level-1 evenp method

Returns t if the remainder from dividing i by two is zero, otherwise ().

(quotient i

1

i

2

) ! i level-1 quotient method

(remainder i

1

i

2

) ! i level-1 remainder method

(modulo i

1

i

2

) ! i level-1 modulo method

Additional arithmetic operations on variable precision integers are de�ned by methods to be attached to the

generic functions quotient, remainder and modulo. The de�nitions of these operations is the same as given

in section 4.1.8

4.3 Level-2 Classes

NOTE|Nothing has been de�ned for level-2 at the time of writing.

5 Environment

This section de�nes the services that EULISP needs to be provided by the con�guration and those operations

that interact with the con�guration so as not to be part of the language, but still necessarily part of the

de�nition. These latter have implementation-de�ned dependencies.

5.1 Interactive Processing 71

5.1 Interactive Processing

The interactive processing of expressions in EULISP refers to the special situation of the interactive entry

and evaluation of expressions. The processing of collections of modules and of individual modules in EULISP

is covered in section 2.6. The interactive processing of expressions necessarily di�ers from that of a whole

module, since working interactively is as if working in an incomplete module, so that conditions that would be

errors or signal errors when processing a whole module must be deferred from the analysis of the expression

to the time when it is evaluated.

Processing can take place in two stages depending on whether a particular implementation interprets,

compiles, or does both, and the complexity of those stages might vary depending on the implementation

technique. In this de�nition, the �rst stage is called \translation" and the second is called \execution". This

section is an informal description of the meaning of an expression and is concerned with the second stage.

An idealization of how this processing should take place is that all de�nitions should be added to the

current module as they are entered, but should not be analysed in any way. As soon as an expression is

entered|that is something that demands execution|it is as if the module has been completed anew, so the

whole module plus any new de�nitions can now be analysed according to the process described in section 2.6

and then instantiated. The expression can now be processed according to the following rules:

literal: a literal stands for itself;

symbol: result is the value stored in the closest lexical binding named by the symbol;

special form: process according to rules for given special form;

de�ning form: process according to rules for a given de�ning form;

macro form: expand form and evaluate result;

function form: evaluate arguments and apply function to parameters. Check arity.

5.2 Module operations

(load-module name) ! null environment special form

Loads the module name.

(dynamic-load-module expression) ! null environment function

Loads the module whose name is the value of expression.

(start-module module-name function-name exp

1

... exp

n

) ! obj environment special form

Evaluates the expressions exp

1

to exp

n

in the empty lexical environment and then applies the value of

function-name exported from module module-name to the list of results. If the value of function-name is not

an applicable object, an error (condition: invalid-operator) is signaled.

5.3 File operations

(path-open path-list name [options]) ! stream environment function

Opens a stream connected to the �le name trying each path in path-list in turn, until it succeeds. In the

case that path-list is exhausted, an error (condition: cannot-open-path) is signaled.

(file-status path) ! obj environment function

Returns () if no �le is accessible via path, otherwise result is a table of implementation-de�ned information

about the state of the �le.

72 6 LIBRARY MODULES

6 Library Modules

6.1 Elementary-functions Module

The contents of this module are de�ned as if all the number classes of EULISP exist (including complex.

Depending on the level of conformance of a given implementation, only the methods for the number classes

de�ned at the level of the processor need be supplied to provide a compliant elementary-functions library

module.

pi:double-oat elementary-functions constant

The value of pi is the ratio the circumference of a circle to its diameter stored to double precision oating

point accuracy.

(sin z) ! z elementary-functions generic

(cos z) ! z elementary-functions generic

(tan z) ! z elementary-functions generic

sin returns the sine of its argument, cos the cosine and tan the tangent. The unit of the argument is radians.

Methods are de�ned for the appropriate subclasses of integer and float and for ratio and complex. The

methods for integer and ratio coerce their argument to float and then compute the result. The methods

for float produce a float result, the methods for complex produce a complex result.

(acos z) ! z elementary-functions generic

(asin z) ! z elementary-functions generic

acos returns the principal arc cosine and asin the principal arc sine of its argument. The unit of the result

is radians. Methods are de�ned for the appropriate subclasses of integer and float and for ratio and

complex. The methods for integer and ratio coerce their argument to float and then compute the result.

The methods for float produce a float result when �1 � z � 1, otherwise a complex result. The methods

for complex produce a complex result.

(atan z) ! z elementary-functions generic

(atan2 x

1

x

2

) ! z elementary-functions generic

atan returns the arc tangent of its argument. The unit of the argument is radians. Methods are de�ned for

the appropriate subclasses of integer and float and for ratio and complex. The methods for integer

and ratio coerce their argument to float and then compute the result. The method for float produces a

float result, the method for complex produces a complex result.

atan2 returns the arc tangent of the quantity x

1

=x

2

, treating the case x

2

= 0 correctly. Methods are

de�ned for (integer integer), (float float) and (ratio ratio). If the arguments are not of the same

subclass of number but in the set given above, the lower one is coerced to the class of the higher according to

the protocol for the level being used (see �gure 3 and �gure 4). The methods for integer and ratio coerce

their arguments to float and then compute the result. A float result is returned.

The range of the real-part of the values returned by atan and atan2 is (�pi; pi].

(exp z) ! z elementary-functions generic

exp returns e raised to the power of x, where e is the base of the natural logarithms. Methods are de�ned

for the appropriate subclasses of integer and float and for ratio and complex. The methods for integer

and ratio coerce their argument to float and then compute the result. The method for float produces a

float result, the method for complex produces a complex result.

(log z) ! z elementary-functions generic

(log2 z) ! z elementary-functions generic

(log10 z) ! z elementary-functions generic

log returns the logarithm of z to the base of the natural logarithms. log2 returns the logarithm of z to base

2. log10 returns the logarithm of z to base 10. The result can be either float or complex. Methods are

de�ned for the appropriate subclasses of integer and float and for ratio and complex. The methods for

integer and ratio coerce their argument to float and then compute the result. The methods for float

6.1 Elementary-functions Module 73

produce a float result when z is real and positive, otherwise a complex result. The methods for complex

produce a complex result.

(sqrt z) ! z elementary-functions generic

sqrt returns the principal square root of z.

(sqrt integer) ! z elementary-functions sqrt method

The method for integer returns an integer if the argument is a positive perfect square, a gaussian integer

if the argument is a negative perfect square, otherwise a float is returned if the argument is positive, or a

complex if the argument is negative.

(sqrt ratio)! z elementary-functions sqrt method

The method for ratio returns a rational if both the numerator and denominator of the argument are

perfect squares, a gaussian rational if the argument is a negative rational with perfect square numerator

and denominator, otherwise a float is returned if the argument is positive, or a complex if the argument is

negative.

(sqrt oat) ! z elementary-functions sqrt method

The method for float returns a float if the argument is non-negative and a complex if it is not.

(sqrt complex) ! z elementary-functions sqrt method

The method for complex returns a complex. In this case, the principal square root is, that with the smallest

argument, where 0 � arg(z) < 2�.

(expt z

1

z

2

) ! z elementary-functions generic

expt returns the principal value that results from raising z

1

to the power z

2

. The complexity in the de�nition

of expt stems from the di�erent combinations of argument classes and what might be a reasonable result

class for a given pair of argument classes. For the purpose of de�ning the behaviour of this function, the

number classes are considered to form a tower as follows:

complex

complex(ratio)

complex(integer)

float

ratio

integer

where the classes correspond to and approximate the abstract mathematical objects: C, Q[i], Z[i], R, Q, Z.

For each argument class combination, the entry in Table 6 shows the lowest class in which the result might

be expressed. In this sense, we de�ne the lower bound class in which the result can occur for a given pair

of arguments. The result of expt should be in the lowest class possible for a given argument combination

without loss of information.

(sinh z) ! z elementary-functions generic

(cosh z) ! z elementary-functions generic

(tanh z) ! z elementary-functions generic

(asinh z) ! z elementary-functions generic

(acosh z) ! z elementary-functions generic

(atanh z) ! z elementary-functions generic

These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine and arc tangent functions.

The result can be float or complex. Methods are de�ned for the appropriate subclasses of integer and

float and for ration and complex. The methods for integer and rational coerce their argument to float

and then compute the result. For the sine, cosine, tangent and arc sine, the methods for float produce a

float result. For the arc cosine, the method for float produces a float if z > 1, otherwise a complex. For

the arc tangent, the method for float produces a float if �1 � z � 1, otherwise a complex.

All methods produce a complex result for a complex argument.

74 6 LIBRARY MODULES

Base Exponent Class

Class integer ratio float complex

integer integer integer float complex

ratio integer integer float complex

float float float float complex

complex(integer) integer integer complex complex

complex(ratio) integer integer complex complex

complex complex complex complex complex

Table 6: expt result classes

NOTE|more detailed speci�cation is required for this library module, in particular with respect

to the handling of negative 0.0 and the stating of branches and cuts.

6.2 Rational Arithmetic Module

(binary-plus q

1

q

2

) ! q rational binary-plus method

(binary-difference q

1

q

2

) ! q rational binary-difference method

(negate q) ! q rational negate method

(binary-times q

1

q

2

) ! q rational binary-times method

(binary-divide q

1

q

2

) ! q rational binary-divide method

(binary-lt q

1

q

2

) ! q rational binary-lt method

(binary-gt q

1

q

2

) ! q rational binary-gt method

(binary-max q

1

q

2

) ! q rational binary-max method

(binary-mqn q

1

q

2

) ! i rational binary-mqn method

(binary-gcd q

1

q

2

) ! q rational binary-gcd method

(binary-lcm q

1

q

2

) ! q rational binary-lcm method

(abs q) ! q rational abs method

(positivep q) ! q rational positivep method

(negativep q) ! q rational negativep method

Arithmetic operations for ratio are de�ned by methods to be attached to the generic functions mentioned

above. The non class-speci�c de�nitions of these operations is given in section 4.1.6. It is implementation-

de�ned whether instances of ratio are kept in reduced (lowest terms) or unreduced form.

((converter string) q) ! q rational method

Constructs and returns a string, the characters of which correspond to the external representation of the

instance of ratio.

(generic-prin q stream) ! q rational generic-prin method

(generic-write q stream) ! q rational generic-write method

Output external representation of q on stream as described in section 2.9 and de�ned in appendix A.4.

(numerator q) ! i rational function

(denominator q) ! i rational function

Return the numerator and the denominator of the rational number respectively.

6.3 Complex Arithmetic Module

(binary-plus z

1

z

2

) ! z complex binary-plus method

(binary-difference z

1

z

2

) ! z complex binary-difference method

6.4 List-operators Module 75

(negate z) ! z complex negate method

(binary-times z

1

z

2

) ! z complex binary-times method

(binary-divide z

1

z

2

) ! z complex binary-divide method

(binary-gcd q

1

q

2

) ! q complex binary-gcd method

(binary-lcm q

1

q

2

) ! q complex binary-lcm method

(zerop z) ! z complex zerop method

(abs z) ! z complex abs method

Arithmetic operations for complex are de�ned by methods to be attached to the generic functions mentioned

above. The greatest common divisor and lowest common multiple methods are only meaningful when the

parameterizing class for complex is either a subclass of integer or ratio. The non class-speci�c de�nitions

of these operations is given in section 4.1.6.

((converter string) z) ! z complex method

Constructs and returns a string, the characters of which correspond to the external representation of the

instance of cartesian-pair.

(generic-prin z stream) ! z complex generic-prin method

(generic-write z stream) ! z complex generic-write method

Output external representation of z on stream as described in section 2.9 and de�ned in appendix A.4.

(make-complex x

1

x

2

) ! z complex function

Constructs and returns a new instance of class complex whose real part and imaginary part are x

1

and x

2

respectively.

(real-part z) ! x complex function

Returns the real part of z.

(imaginary-part z) ! x complex function

Returns the imaginary part of z.

6.4 List-operators Module

6.4.1 Reconstructing Lists

(append [list

1

... list

n

obj]) ! list(obj) listops function

The �rst elements of the top-level pairs of list

1

to list

n

are copied to form a single list, which shares the

structure of obj by using cons. It is an error if any list

i

is not a proper list. If no arguments are given, the

result is ().

(removeq obj list) ! list(obj) listops function

(remove obj list [predicate]) ! list(obj) listops function

Constructs a top-level copy of list containing only those �rst elements of the top-level pairs in list, such that

(predicate obj element) is false. In the case of removeq, predicate is eq. In the case of remove, if predicate is

not supplied, equal is used. The result of these functions may share structure with the argument list and

the result may be eq to list if obj does not occur in list.

(reverse list(obj))! list(obj) listops function

Constructs a copy of list such that the �rst element of each top-level pair at position i in a list of length n

appears at position n� i � 1.

(substq obj

1

obj

2

list) ! list(obj) listops function

(subst obj

1

obj

2

list [predicate]) ! list(obj) listops function

Constructs a top-level copy of list replacing with obj

2

those �rst elements of the top-level pairs in list, such

that (predicate obj

1

element) is true. In the case of substq, predicate is eq. In the case of subst, if predicate

is not supplied, equal is used. The result of these functions may share structure with the argument list

and the result may be eq to list if obj does not occur in list.

76 6 LIBRARY MODULES

6.4.2 Copying Lists

not-an-alist(execution-condition) listops condition

This condition is signaled by copy-alist. The init-options for this condition-class are:

alist: The o�ending object.

(copy-alist alist)! alist listops function

Constructs a copy of the list alist copying both the top-level pairs and the second level pairs (the associations).

An error is signaled (condition: not-an-alist) if the top-level elements of alist are not subclasses of pair.

(copy-list list)! list listops function

Constructs a copy of list by copying the top-level pairs only.

(copy-tree list)! list listops function

Constructs a copy of list by copying the top-level pairs and then operates recursively on each of those pairs,

thus copying every pair in list.

6.4.3 Updating Lists

(nconc [list

1

... list

n

obj]) ! list(obj) listops function

The �rst elements of the top-level pairs of list

1

to list

n

are concatenated (destructively) to form a single list,

which is then linked (destructively) to obj. Consequently, if obj is an improper list, the result will be an

improper list. If no arguments are given, the result is (). If no arguments are given the result is ().

(nreverse list(obj))! list(obj) listops function

The result is a list containing the same elements as list, but in reverse order. The argument list might be

modi�ed and re-used to produce the result. The result might or moight not be eq to list, so the result should

always be used, since it is not guaranteed that retaining a reference to list and calling nreverse will cause

that reference to contain the reversed list.

(tconc list obj) ! list(obj) listops function

(lconc list

1

list

2

) ! list(obj) listops function

These two functions operate in a similar way|the di�erence is that tconc destructively adds a single object

to the end of list whilst lconc adds a list of objects. The �rst argument is not the list of objects itself, but

a pair, the �elds of which hold the front and the last pair of the list being updated respectively. If the �rst

argument is (), a new pair is constructed, initialized as described, and returned as the result. New data

may be added to this structure using either tconc or lconc.

(deleteq obj list) ! list(obj) listops function

(delete obj list [predicate]) ! list(obj) listops function

Destructively modi�es list so that it only contains those �rst elements of the top-level pairs in list, such that

(predicate obj element) is false. Note that the return value of delete should always be used in preferece to

the pointer to the list being modi�ed, so that in the situation of the �rst element of the list being deleted

the correct value be used subsequently. In the case of deleteq, predicate is eq. In the case of delete, if

predicate is not supplied, equal is used.

6.4.4 Converting Lists

((converter vector) pair) ! pair listops method

Constructs and returns a vector the elements of which correspond to �rst elements of the top-level pairs in

the instance of pair. It is an error if the source is not a proper list.

((converter string) pair) ! pair listops method

Constructs and returns a string, the characters of which correspond to the characters comprising the �rst

6.4 List-operators Module 77

elements of the top-level pairs of the instance of pair. It is an error if the source is not a proper list. An

error is signaled (condition: improper-list-conversion) unless all of those elements are instances of the

class character.

6.4.5 Searching Lists

(assq obj alist [fail-value]) ! obj listops function

(assoc obj alist [[predicate] fail-value]) ! obj listops function

The association list alist is seaarched for a key such that (predicate obj key) is not false. In the case of assq,

predicate is eq. In the case of assoc, if predicate is not supplied, equal is used. If such a key is found,

the corresponding key-value pair is returned. If none of the keys matches, the result is () or fail-value if

supplied.

(memq obj list)! boolean listops function

(member obj list [predicate]) ! boolean listops function

Examines the �rst element of each top-level pair in list for an element such that (predicate obj element) is

true. In the case of memq, predicate is eq. In the case of member, if predicate is not supplied, equal is used.

If such an element is found, then the list of which obj is the �rst element is returned. If no such element is

found, the result is ().

(positionq obj list)! i listops function

(position obj list[predicate])! i listops function

Compares the �rst element of each top-level pair in list until an element is found which such that (predicate

obj element) is true. In the case of posq, predicate is eq. In the case of pos, if predicate is not supplied,

equal is used. If such an element is found, then its position in list, counting from the front, is returned, such

that (predicate obj (list-ref (position obj list predicate) list)) is true. If no such element is found,

the result is ().

6.4.6 Dissecting Lists

(last-car list) ! obj listops function

Returns the car of the last pair of list.

(last-pair list)! pair listops function

Returns the last pair of list.

list-index-out-of-range(execution-condition) listops condition

This condition is signaled by list-ref and list-tail. The init-options for this condition-class are:

list: The value of this option is the list in question.

index: The value of this option is the index position sought.

(list-ref list n) ! obj listops function

((setter list-ref) list n obj) ! obj listops function

list-ref returns the element at position n in the list, where the index of the �rst element is zero. (setter

list-ref) updates the nth position in list. An error is signalled (condition: list-index-out-of-range) if

n is not in the range zero to the length of the list minus one.

(list-tail list n) ! list(obj) listops function

Returns the tail of list which starts with the element at position n in the list, where the index of the �rst

element is zero. An error is signalled (condition: list-index-out-of-range) if n is not in the range zero

to the length of the list minus one.

78 6 LIBRARY MODULES

6.4.7 Lists as Sets

(difference [predicate] [list

1

...]) ! list listops function

(differenceq [list

1

...]) ! list listops function

If no arguments are supplied, the result is (). If one (list) argument is given, the result is that argument.

If more than one argument is passed, set di�erence of the supplied lists is computed cumulatively using left

association. differenceq uses eq for comparison. difference uses equal for comparison, or predicate if

supplied.

(intersection [predicate] [list

1

...]) ! list listops function

(intersectionq [list

1

...]) ! list listops function

If no arguments are supplied, the result is (). If one (list) argument is given, the result is that argument. If

more than one argument is passed, the intersection of the supplied lists is computed. intersectionq uses

eq for comparison. intersection uses equal for comparison or predicate, if supplied.

(null obj) ! boolean listops function

Returns t if obj is eq to () and () if not.

(union [predicate] [list

1

...]) ! list listops function

(unionq [list

1

...]) ! list listops function

If no arguments are supplied, the result is (). If one (list) argument is given, the result is that argument.

If more than one argument is passed, the union of the supplied lists is computed. unionq uses eq for

comparison. union uses equal for comparison or predicate, if supplied.

6.4.8 Mapping over Lists

(mapc function list

1

... list

n

) ! nul listops function

(mapcar function list

1

... list

n

) ! list(obj) listops function

(mapcan function list

1

... list

n

) ! list(obj) listops function

These three mapping operators apply function the successive cars of list

1

to list

n

. The di�erences between

them arise from how they combine the results of these applications: mapc discards the results, mapcar

constructs a list of the results using cons and mapcan constructs a list of the results using nconc. The

number of applications of function is determined by the length of the shortest list. The results from side-

e�ecting the lists which are the arguments to the map operation are unde�ned.

(mapl function list

1

...) ! null listops function

(maplist function list

1

...) ! list(obj) listops function

(mapcon function list

1

...) ! list(obj) listops function

These three mapping operators apply function the successive cdrs of list

1

to list

n

. The di�erences between

them arise from how they combine the results of these applications: mapl discards the results, maplist

constructs a list of the results using cons and mapcon constructs a list of the results using nconc. The

number of applications is limited by the length of the shortest list. The results from side-e�ecting the lists

which are the arguments to the map operation are unde�ned.

6.5 Formatted-IO Module

The formatted-io module exports the functions format and scan and some related conditions.

scan-mismatch(stream-condition) format condition

This condition is signaled by scan. The init-options for this condition are:

format-string: The value of this option is the format string that was passed to scan.

input: The value of this option is a list of the items read by scan up to and including the object that caused

the condition to be signaled.

